<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html> <head> <title>UTas ePrints - Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia</title> <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script> <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style> <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style> <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="Top" href="http://eprints.utas.edu.au/" /> <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" /> <meta content="Ulrich, T." name="eprints.creators_name" /> <meta content="Golding, S.D." name="eprints.creators_name" /> <meta content="Kamber, B.S." name="eprints.creators_name" /> <meta content="Zaw, K." name="eprints.creators_name" /> <meta content="Taube, A." name="eprints.creators_name" /> <meta content="thomas.ulrich@anu.edu.au" name="eprints.creators_id" /> <meta content="" name="eprints.creators_id" /> <meta content="" name="eprints.creators_id" /> <meta content="Khin.Zaw@utas.edu.au" name="eprints.creators_id" /> <meta content="" name="eprints.creators_id" /> <meta content="article" name="eprints.type" /> <meta content="2007-10-05 05:54:04" name="eprints.datestamp" /> <meta content="2008-01-08 15:30:00" name="eprints.lastmod" /> <meta content="show" name="eprints.metadata_visibility" /> <meta content="Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia" name="eprints.title" /> <meta content="pub" name="eprints.ispublished" /> <meta content="260100" name="eprints.subjects" /> <meta content="restricted" name="eprints.full_text_status" /> <meta content="VHMS; Fluid inclusions; Tonalite; Laser ablation ICP-MS; Magmatic vapor" name="eprints.keywords" /> <meta content="Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan. The Mt Morgan Au–Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite–trondhjemite–dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au–Cu ore is associated with a later quartz–chalcopyrite–pyrite stockwork mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au–Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45–80% seawater salinity) and temperatures of 210 to 270 degrees C estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array of CO2-bearing fluids. Comparison with active submarine hydrothermal vents shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au–Cu mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu originated from the Mt Morgan intrusions and a particular volcanic strata that shows elevated Cu background." name="eprints.abstract" /> <meta content="2002" name="eprints.date" /> <meta content="published" name="eprints.date_type" /> <meta content="Ore Geology Reviews" name="eprints.publication" /> <meta content="22" name="eprints.volume" /> <meta content="1-2" name="eprints.number" /> <meta content="61-90" name="eprints.pagerange" /> <meta content="doi:10.1016/S0169-1368(02)00109-9" name="eprints.id_number" /> <meta content="TRUE" name="eprints.refereed" /> <meta content="0169-1368" name="eprints.issn" /> <meta content="http://dx.doi.org/doi:10.1016/S0169-1368(02)00109-9" name="eprints.official_url" /> <meta content="Alt, J.C., 1994. A sulfur isotopic profile through the Troodos ophiolite, Cyprus: primary composition and the effects of seawater hydrothermal alteration. Geochimica et Cosmochimica Acta 58, 1825–1840. Alt, J.C., Anderson, T.F., Bonnell, L., 1989. The geochemistry of sulfur in a 1.3 km section of hydrothermally altered oceanic crust, DSDP Hole 504B. Geochimica et Cosmochimica Acta 53 (5), 1011 – 1023. Archibald, S.M., Migdisov, A.A., Williams-Jones, A.E., 2001. The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures. Geochimica et Cosmochimica Acta 65, 4413– 4423. Arnold, G.O., Sillitoe, R.H., 1989. Mount Morgan gold – copper deposit, Queensland, Australia: evidence for an intrusion-related replacement origin. Economic Geology 84, 1805– 1816. Arribas Jr., A., 1995. Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. In: Thompson, J.F.H. (Ed.), Magmas, Fluids and Ore Deposits. Mineralogical Association of Canada, Victoria, British Columbia, pp. 419– 454. Short Course Series. Ballantyne, J.M., Moore, J.N., 1988. Arsenic geochemistry in geothermal systems. Geochimica et Cosmochimica Acta 52, 475– 483. Barker, F., 1979. Trondhjemite; definition, environment and hypotheses of origin. In: Barker, F. (Ed.), Trondhjemites, Dacites, and Related Rocks. Elsevier, Amsterdam, Netherlands, pp. 1– 12. Barker, F., Arth, J.G., 1976. Generation of trondhjemitic– tonalitic liquids and Archean bimodal trondhjemite–basalt suites. Geology 4 (10), 596– 600. Binns, R.A., Parr, J.M., Scott, S.D., Gemmell, J.B., Herzig, P.M., 1995. PACMANUS; an active seafloor hydrothermal field on siliceous volcanic rocks in the eastern Manus Basin, Papua New Guinea. In: Mauk, L., George, J.D.S. (Eds.), Proceedings of the 1995 PACRIM Congress; Exploring the Rim. Australasian Institute of Mining and Metallurgy, Parkville, Victoria, Australia, pp. 49– 54. Bischoff, J.L., Dickson, F.W., 1975. Seawater– basalt interaction at 200 jC and 500 bars; implications for origin of sea-floor heavymetal deposits and regulation of seawater chemistry. Earth and Planetary Science Letters 25 (3), 385– 397. Bischoff, J.L., Pitzer, K.S., 1985. Phase-relations and adiabats in boiling seafloor geothermal systems. Earth and Planetary Science Letters 75 (4), 327– 338. Blevin, P.L., Candela, P.A., Chappell, B.W., 1996. Magmatic controls on ore metal ratios across the Cu–Mo (Au) ‘porphyyry’ spectrum. In: Kennard, J.M. (Ed.), Geoscience for the Community; 13th Australian Geological Convention. Geological Society of Australia, Canberra, Australia, p. 41. Bodnar, R.J., Vityk, M.O., 1994. Interpretation of microthermometric data for H2O–NaCl fluid inclusions. In: DeVivo, B., Frezzotti, M.L. (Eds.), Fluid Inclusions in Minerals, Virginia Polytechnic Institute and State University press, Blacksburg, VA, pp. 117–130. Boulter, C.A., 1996. Extensional tectonics and magmatism as drivers of convection leading to Iberian pyrite belt massive sulphide deposits? Journal of the Geological Society of London 153 (Part 2), 181– 184. Brown, D., McClay, K.R., 1998. Data report: sulfide textures in the active TAG massive sulfide deposit, 26 N, Mid-Atlantic Ridge. In: Herzig, P.M., Humphris, S.E., Miller, D.J., Zierenberg, R.A. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, pp. 193– 200. Cann, J.R., Strens, M.R., Rice, A., 1985. A simple magma-driven thermal balance model for the formation of volcanogenic massive sulphides. Earth and Planetary Science Letters 76 (1– 2), 123– 134. Cathles, L.M., 1983. An analysis of the hydrothermal system responsible for massive sulfide deposition in the Hokuroku basin of Japan. Economic Geology Monograph 5, 439– 487. Clift, P.D., 1995. Volcaniclastic sedimentation and volcanism during the rifting of the Western Pacific island arcs. In: Taylor, B., Natland, J. (Eds.), Active Margins and Marginal Basins of the Western Pacific. Geophysical Monograph. American Geophysical Union, pp. 67–96. Cline, J.S., Bodnar, R.J., 1991. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Journal of Geophysical Research 96 (B5), 8113– 8126. Collerson, K.D., Kamber, B.S., Schoenberg, R., 2002. Applications of accurate, high-precision Pb isotope ratio measurement by multi-collector ICP-MS. Chemical Geology 188, 65– 83. Cooke, D.R., McPhail, D.C., 1996. Telluride mineralisation in low sulfidation epithermal veins; contributions of magmatic volatiles. In: Kennard John, M. (Ed.), Geoscience for the Community; 13th Australian Geological Convention. Abstracts-Geological Society of Australia. Geological Society of Australia, Sydney, NSW, Australia, p. 96. Cooke, D.R., Simmons, S.F., 2000. Characterisitcs and genesis of epithermal gold deposits. Reviews in Economic Geology 13, 221– 244. Cornelius, K.D., 1967. Breccia pipe associated with epigenetic mineralization, Mount Morgan, Queensland. Economic Geology 62 (2), 282– 285. Cornelius, K.D., 1968. The ore deposit and general geology of the Mount Morgan area. PhD Thesis, University of Queensland, Brisbane, 538 pp. Delaney, J.R., Cosens, B.A., 1982. Boiling and metal deposition in submarine hydrothermal systems. Marine Technology Society Journal 16 (3, Special issue, Polymetallic sulfides), 62– 66. Eadington, P.J., Smith, J.W., Wilkins, R.W.T., 1974. Fluid inclusion and sulphur isotope research, Mount Morgan, Queensland. Australasian Institute of Mining and Metallurgy, 441–444. Ewart, A., 1979. A review of the mineralogy and chemistry of Tertiary– Recent dacitic, latitic, rhyolitic, and related salic volcanic rocks. In: Barker, F. (Ed.), Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam, pp. 13–122. Ewart, A., Hawkesworth, C.J., 1987. The Pleistocene–Recent Tonga– Kermadec Arc lavas; interpretation of new isotopic and rare earth data in terms of a depleted mantle source model. Journal of Petrology 28 (3), 495– 530. Fiske, R.S., Naka, J., Iizasa, K., Yuasa, M., Klaus, A., 2001. Submarine silicic caldera at the front of the Izu– Bonin arc, Japan: voluminous seafloor eruptions of rhyolite pumice. Geological Society of America Bulletin 113 (7), 813– 824. Fouquet, Y., et al., 1993. Metallogenesis in back-arc environments; the Lau Basin example. Economic Geology 88 (8), 2150– 2177. Fouquet, Y., et al., 1996. Formation of large sulfide mineral deposits along fast spreading ridges; example from off-axial deposits at 12 degrees 43VN on the East Pacific Rise. Earth and Planetary Science Letters 144 (1–2), 147– 162. Frets, D.C., 1974. Rock Relationships and Mineralization at Mount Morgan. Australasian Institute of Mining and Metallurgy, Parkville, Vic., Australia, pp. 425– 440. Frets, D.C., Balde, R., 1975. The Mount Morgan copper– gold ore deposit. In: Knight, C.L. (Ed.), Economic Geology of Australia and Papua New Guinea: I. Metals. Australasian Institute of Mining and Metallurgy, Melbourne, pp. 779– 785. Galley, A.G., 1999. The role of composite sub-seafloor intrusions in developing volcanogenic massive sulfide hydrothermal systems. In: Anonymous (Ed.), Abstracts with Programs-Geological Society of America. Geological Society of America, 1999 Annual Meeting. Geological Society of America (GSA), p. 405. Galley, A., 2000. The role of synvolcanic composite intrusions in the generation of VMS hydrothermal systems. In: Gemmell, J.B., Pongratz, J. (Eds.), Volcanic Environments and Massive Sulfide Deposits, Program and Abstracts, Hobart, Australia, pp. 50– 51. Galley, A., van, B.O., Franklin, J., 2000. The relationship between intrusion-hosted Cu–Mo mineralization and VMS deposits of the Archean Sturgeon Lake mining camp, northwestern Ontario. Economic Geology 95 (7), 1543– 1550. Gemmell, J.B., 1987. Geochemistry of metallic trace elements in fumarolic condensates from Nicaraguan and Costa Rican volcanoes. In: Williams, N., Carr, M. (Eds.), Richard E. Stoiber 75th Birthday Volume. Journal of Volcanology and Geothermal Research, vol. 33, Elsevier, Amsterdam, Netherlands, pp. 161– 181. Gemmell, J.B., 1995. Comparison of volcanic-hosted massive sulphide deposits in modern and ancient back-arc basins; examples from the Southwest Pacific and Australia. In: Mauk, L., George, J.D.S. (Eds.), Proceedings of the 1995 PACRIM Congress; Exploring the Rim. Australasian Institute of Mining and Metallurgy, Parkville, Victoria, Australia, pp. 227– 232. Gemmell, J.B., Large, R.R., 1992. Stringer system and alteration zones underlying the Hellyer volcanogenic massive sulfide deposit, Tasmania, Australia. Economic Geology 87 (3), 620– 649. Gemmell, J.B., Sharpe, R., Ocean Drilling Program, L., Shipboard Scientific Party, College Station, TX, United States, 1998. Detailed sulfur-isotope investigation of the TAG hydrothermal mound and stockwork zone, 26 degrees N, Mid-Atlantic Ridge. In: Herzig, P.M., et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results. Proceedings of the Ocean Drilling Program, Scientific Results, TAG, Drilling an Active Hydrothermal System on a Sediment-Free Slow-Spreading Ridge; Covering Leg 158 of the Cruises of the Drilling Vessel JOIDES Resolution, Las Palmas, Gran Canaria, to Las Palmas, Gran Canaria, Site 957, 23 September – 22 November 1994. Texas A&M University, Ocean Drilling Program, College Station, TX, United States, pp. 71– 84. Gibbson, G., 1974. Mineralogical Studies at Mount Morgan, Queensland. Australasian Institute of Mining and Metallurgy, pp. 445– 463. Golding, S.D., et al., 1993. Mount Morgan Gold– Copper Deposit: The 1992 Perspective. Australasian Institute of Mining and Metallurgy, Adelaide, Parkville, Vic., Australia, pp. 95–111. Golding, S.D., et al., 1994. Mount Morgan gold– copper deposit; geochemical constraints on the sources of volatiles and lead and the age of mineralisation. In: Henderson, R.A., Davis, B. (Eds.), Contributions of the Economic Geology Research Unit. Extended Conference Abstracts; New Developments in Geology and Metallogeny; Northern Tasman Orogenic Zone. Geology Department, James Cook University of North Queensland, Townsville, Australia, pp. 89–95. Gulson, B.L., Vaasjoki, M., 1987. Lead isotope data from the Thalanga, Dry River and Mt. Chalmers base metal deposits and their bearing on exploration and ore genesis in eastern Australia. Australian Journal of Earth Sciences 34 (2), 159– 173. Gu¨nther, D., Aude´tat, A., Frischknecht, R., Heinrich, C.A., 1998. Quantitative analysis of major, minor and trace elements in fluid inclusions using Laser Ablation-Inductively Coupled Plasma- Mass Spectrometry (LA-ICP-MS). Journal of Analytical Atomic Spectroscopy 13 (4), 263– 270. Heinrich, C.A., Ryan, C.G., Mernagh, T.P., Eadington, P.J., 1992. Segregation of ore metals between magmatic brine and vapor: a fluid inclusion study using PIXE microanalysis. Economic Geology 87, 1566– 1583. Heinrich, C.A., Gu¨nther, D., Aude´tat, A., Ulrich, T., Frischknecht, R., 1999. Metal fractionation between magmatic brine and vapor, determined by micro-analysis of fluid inclusions. Geology 27 (8), 755– 758. Henley, R.W., Thornley, P., 1979. Some geothermal aspects of polymetallic massive sulfide formation. Economic Geology 74, 1600–1612. Huston, D.L., Sie, S.H., Suter, G.F., Cooke, D.R., Both, R.A., 1995. Trace elements in sulfide minerals from eastern Australian volcanic- hosted massive sulfide deposits; part I, proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and part II, selenium levels in pyrite; comparison with d34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology 90 (5), 1167– 1196. Iizasa, K., et al., 1999. A Kuroko-type polymetallic sulfide deposit in a submarine silicic caldera. Science 283 (5404), 975– 977. Kamber, B.S., Moorbath, S., 1998. Initial Pb of the Amıˆtsoq gneiss revisited: implication for the timing of early Archaean crustal evolution in West Greenland. Chemical Geology 150, 19–41. Kawate, S., Arima, M., 1998. Petrogenesis of the Tanzawa plutonic complex, central Japan: exposed felsic middle crust of the Izu– Bonin– Mariana arc. Island Arc 7 (3), 342– 358. Khin Zaw, Gemmell, J.B., Large, R.R., Mernagh, T.P., Ryan, C.G., 1996. Evolution and source of ore fluids in the stringer system, Hellyer VHMS deposit, Tasmania, Australia: evidence from fluid inclusion microthermometry and geochemistry. Ore Geology Reviews 10, 251–278. Khin Zaw, Hunns, S.R., Large, R.R., Gemmell, B.J., Ryan, C.G., Mernagh, T.P., 2002. Microthermometry and chemical composition of fluid inclusions from the Mt. Chalmers volcanic-hosted massive sulphide deposits, central Queensland, Australia: implications for ore genesis. Chemical Geology (in press). Kojima, S., Sugaki, A., 1985. Phase-relations in the Cu–Fe –Zn–S System between 500 jC and 300 jC under hydrothermal conditions. Economic Geology 80 (1), 158– 171. Kramers, J., Tolstikhin, I.N., 1993. Modelling of Earth’s accretion using Pu– Xe, U–Pb and siderophile element systematics. In: Anonymous (Ed.), AGU 1993 Fall Meeting. Eos, Transactions, American Geophysical Union American Geophysical Union, Washington, DC, United States, p. 655. Kramers, J.D., Tolstikhin, I.N., 1997. Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chemical Geology 139, 75– 110. Large, R.R., 1992. Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models. Economic Geology 87, 471–510. Lawrence, L.J., 1967. A mineragraphic study of Mount Morgan copper–gold ore. Australasian Institute of Mining and Metallurgy Proceedings 233, Parkville, Vic., Australia, pp. 29– 47. Lawrence, L.J., 1972. The thermal metamorphism of a pyritic sulfide ore. Economic Geology 67, 487– 496. Lawrence, L.J., 1974. The Nature and Origin of the Ore Minerals of Mount Morgan. Australasian Institute of Mining and Metallurgy, pp. 417– 424. Le´cuyer, C., et al., 1999. Phase separation and fluid mixing in subseafloor back arc hydrothermal systems: a microthermometric and oxygen isotope study of fluid inclusions in the baritesulfide chimneys of the Lau basin. Journal of Geophysical Research 104 (B8), 17911– 17927. Lentz, D.R., 1998. Petrogenetic evolution of felsic volcanic sequences associated with Phanerozoic volcanic-hosted massive sulphide systems; the role of extensional geodynamics. Ore Geology Reviews 12 (5), 289–327. Lesher, C.M., Goodwin, A.M., Campbell, I.H., Gorton, M.P., 1986. Trace-element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior Province, Canada. Canadian Journal of Earth Sciences 23, 222– 237. Lydon, J.W., 1988. Ore deposit models. Volcanogenic massive sulphide deposits Part 2: genetic models. Geoscience Canada 15, 43– 65. Marsaglia, K.M., 1995. Interarc and backarc basins. In: Busby, C.J., Ingersoll, R.V. (Eds.), Tectonics of Sedimentary Basins. Blackwell, Cambridge, MA, pp. 299–329. McDonough, W.F., Sun, S.S., 1995. Composition of the Earth. Chemical Geology 120, 223– 253. Messenger, P.R., 1996. Relationships between Devonian magmatism and Au–Cu mineralisation at Mt. Morgan, Central Queensland. PhD Thesis, University of Queensland, Brisbane, 353 pp. Messenger, P.R., Golding, S.D., Taube, A., 1997. Volcanic setting of the Mt. Morgan Au–Cu deposit, Central Queensland: implications of ore genesis. In: Ashley, P.M., Flood, P.G. (Eds.), Tectonics and Metallogenesis of the New England Orogen. Geological Society of Australia, Special Publication, vol. 19, pp. 109–127. Messenger, P., Taube, A., Golding, S.D., Hartley, J.S., 1998. Mount Morgan gold– copper deposit. In: Berkman, D.A., Mackenzie, D.H. (Eds.), Geology of Australian and Papua New Guinean Mineral Deposits. Australasian Institute of Mining and Metallurgy, Melbourne, pp. 715–722. Nakajima, K., Arima, M., 1998. Melting experiments on hydrous low-K tholeiite: implications for the genesis of tonalitic crust in the Izu– Bonin–Mariana arc. Island Arc 7 (3), 359–373. Naney, M.T., 1983. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. American Journal of Science 283, 993– 1033. Ohmoto, H., Goldhaber, M.B., 1997. Sulfur and carbon isotopes. In: Barnes, H.L. (Eds.), Geochemistry of Hydrothermal Ore Deposits. Wiley, New York, pp. 517–612. Ohmoto, H., Rye, R.O., 1979. Sulfur and carbon isotopes. In: Barnes, H.L. (Eds.), Geochemistry of Hydrothermal Ore Deposits. Wiley, New York, pp. 509– 567. Paltridge, I.M., 1967. Breccia pipe mineralization at Mount Morgan— a discussion. Economic Geology 62, 861–862. Pichler, T., Giggenbach, W.F., McInnes, B.I.A., Buhl, D., Duck, B., 1999. Fe sulfide formation due to seawater – gas – sediment interaction in a shallow-water hydrothermal system at Lihir Island, Papua New Guinea. Economic Geology 94 (2), 281– 288. Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. In: Haapala, I., Condie, K. (Eds.), Precambrian Granitoids; Petrogenesis, Geochemistry and Metallogeny. Precambrian Research, vol. 51, pp. 1 –25. Robinson, B.W., Kusakabe, M., 1975. Quantitative preparation of sulfur dioxide for 34S/32S analysis from sulfides by combustion with cuprous oxide. Chemical Geology 47, 1179–1181. Roedder, E. (Ed.), 1984. Fluid Inclusions. Reviews in Mineralogy, vol. 12, Mineralogical Society of America, Virginia Polytechnic Institute and State University press, Blacksburg, VA, 646 pp. Sawkins, F.J., 1990. Integrated tectonic– genetic model for volcanic- hosted massive sulfide deposits. Geology 18 (11), 1061–1064. Schuetz, W., Ebneth, J., Meyer, K.D., 1987. Trondhjemites, tonalites and diorites in the South Portuguese Zone and their relations to the vulcanites and mineral deposits of the Iberian Pyrite Belt. Geologische Rundschau 76 (1), 201– 212. Seewald, J.S., Seyfried Jr., W.E., 1990. The effect of temperature on metal mobility in subseafloor hydrothermal systems; constraints from basalt alteration experiments. Earth and Planetary Science Letters 101 (2– 4), 388– 403. Seyfried Jr., W.E., Bischoff, J.L., 1979. Low temperature basalt alteration by seawater; an experimental study at 70 jC and 150 jC. Geochimica et Cosmochimica Acta 43 (12), 1937– 1948. Sherlock, R.L., Roth, T., Spooner, E.T.C., Bray, C.J., 1999. Origin of the Eskay Creek precious metal-rich volcanogenic massive sulfide-deposit. Fluid inclusion and stable isotope evidence. Economic Geology 94, 803– 824. Shinohara, H., 1994. Exsolution of immiscible vapor and liquid phases from a crystallizing silicate melt: implications for chlorine and metal transport. Geochimica et Cosmochimica Acta 58 (23), 5215– 5221. Smith, R.N., Huston, D.L., 1992. Distribution and association of selected trace elements at the Rosebery deposit, Tasmania. Economic Geology 87, 706– 719. Solomon, M., Eastoe, C.J., Walshe, J.L., Green, G.R., 1988. Mineral deposits and sulfur isotope abundances in the Mount Read Volcanics between Que River and Mount Darwin, Tasmania. Economic Geology 83 (7), 1307– 1328. Stanton, R.L., 1987. Magmatic evolution and exhalative ores; evidence from the SW Pacific. In: Brennan, E. (Ed.), Pacific Rim Congress 87; an International Congress on the Geology, Structure, Mineralisation and Economics of the Pacific Rim. Australasian Institute of Mining and Metallurgy, Parkville, Victoria, Australia, pp. 591–595. Symonds, R.B., Rose, W.I., Reed, M.H., Lichte, F.E., Finnegan, D.L., 1987. Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia. Geochimica et Cosmochimica Acta 51, 2083– 2101. Taube, A., 1986. The Mount Morgan gold– copper mine and environment, Queensland: a volcanogenic massive sulphide deposit associated with penecontemporaneous faulting. Economic Geology 81, 1322– 1340. Taube, A., 1990. Mount Morgan gold– copper deposit. In: Huges, F.E. (Ed.), Geology of the Mineral Deposits of Australia and Papua New Guinea. Australasian Institute of Mining and Metallurgy, Melbourne, pp. 1499–1504. Taube, A., England, R., Messenger, P.R., 2000. Hurgledurgles as a guide to ore at Mount Morgan, Queensland: retrogressed dalmatianite and new volcanogenic mineralisation. In: Gemmell, J.B., Pongratz, J. (Eds.), Volcanic Environments and Massive Sulfide Deposits, Program and Abstracts, Hobart, Australia, 200 pp. Von Damm, K.L., 1990. Seafloor hydrothermal activity; black smoker chemistry and chimneys. Annual Review of Earth and Planetary Sciences 18, 173– 204. Whitney, J.A., 1977. A synthetic model for vapor generation in tonalite magmas and its economic ramifications. Economic Geology 72, 686– 690. Winther, K.T., 1996. An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chemical Geology 127 (1– 3), 43– 59. Worthington, T.J., Gregory, M.R., Bondarenko, V., 1999. The Denham Caldera on Raoul Volcano; dacitic volcanism in the Tonga –Kermadec Arc. Journal of Volcanology and Geothermal Research 90 (1– 2), 29–48. Wright, I.C., Gamble, J.A., 1999. Southern Kermadec submarine caldera arc volcanoes (SW Pacific); caldera formation by effusive and pyroclastic eruption. Marine Geology 161 (2–4), 209– 229. Wright, I.C., de Ronde, C.E.J., Faure, K., Gamble, J.A., 1998. Discovery of hydrothermal sulfide mineralization from southern Kermadec arc volcanoes (SW Pacific). Earth and Planetary Science Letters 164 (1–2), 335– 343." name="eprints.referencetext" /> <meta content="Ulrich, T. and Golding, S.D. and Kamber, B.S. and Zaw, K. and Taube, A. (2002) Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia. Ore Geology Reviews, 22 (1-2). pp. 61-90. ISSN 0169-1368" name="eprints.citation" /> <meta content="http://eprints.utas.edu.au/2065/1/Ulrich.Golding.etal.OGR.2002.pdf" name="eprints.document_url" /> <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /> <meta content="Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia" name="DC.title" /> <meta content="Ulrich, T." name="DC.creator" /> <meta content="Golding, S.D." name="DC.creator" /> <meta content="Kamber, B.S." name="DC.creator" /> <meta content="Zaw, K." name="DC.creator" /> <meta content="Taube, A." name="DC.creator" /> <meta content="260100 Geology" name="DC.subject" /> <meta content="Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan. The Mt Morgan Au–Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite–trondhjemite–dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au–Cu ore is associated with a later quartz–chalcopyrite–pyrite stockwork mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au–Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45–80% seawater salinity) and temperatures of 210 to 270 degrees C estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array of CO2-bearing fluids. Comparison with active submarine hydrothermal vents shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au–Cu mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu originated from the Mt Morgan intrusions and a particular volcanic strata that shows elevated Cu background." name="DC.description" /> <meta content="2002" name="DC.date" /> <meta content="Article" name="DC.type" /> <meta content="PeerReviewed" name="DC.type" /> <meta content="application/pdf" name="DC.format" /> <meta content="http://eprints.utas.edu.au/2065/1/Ulrich.Golding.etal.OGR.2002.pdf" name="DC.identifier" /> <meta content="http://dx.doi.org/doi:10.1016/S0169-1368(02)00109-9" name="DC.relation" /> <meta content="Ulrich, T. and Golding, S.D. and Kamber, B.S. and Zaw, K. and Taube, A. (2002) Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia. Ore Geology Reviews, 22 (1-2). pp. 61-90. ISSN 0169-1368" name="DC.identifier" /> <meta content="http://eprints.utas.edu.au/2065/" name="DC.relation" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/BibTeX/epprod-eprint-2065.bib" title="BibTeX" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/ContextObject/epprod-eprint-2065.xml" title="OpenURL ContextObject" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/ContextObject::Dissertation/epprod-eprint-2065.xml" title="OpenURL Dissertation" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/ContextObject::Journal/epprod-eprint-2065.xml" title="OpenURL Journal" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/DC/epprod-eprint-2065.txt" title="Dublin Core" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/DIDL/epprod-eprint-2065.xml" title="DIDL" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/EndNote/epprod-eprint-2065.enw" title="EndNote" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/HTML/epprod-eprint-2065.html" title="HTML Citation" type="text/html; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/METS/epprod-eprint-2065.xml" title="METS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/MODS/epprod-eprint-2065.xml" title="MODS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/RIS/epprod-eprint-2065.ris" title="Reference Manager" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/Refer/epprod-eprint-2065.refer" title="Refer" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/Simple/epprod-eprint-2065text" title="Simple Metadata" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/Text/epprod-eprint-2065.txt" title="ASCII Citation" type="text/plain; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/XML/epprod-eprint-2065.xml" title="EP3 XML" type="text/xml" /> </head> <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')"> <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div> <table width="795" border="0" cellspacing="0" cellpadding="0"> <tr> <td><script language="JavaScript1.2">mmLoadMenus();</script> <table border="0" cellpadding="0" cellspacing="0" width="795"> <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" --> <tr> <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td> </tr> <tr> <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td> <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td> <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td> <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td> </tr> <tr> <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td> <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td> <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td> <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td> <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td> <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td> <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td> <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td> <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td> <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td> </tr> <tr> <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td> <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td> </tr> </table></td> </tr> <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr> <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td> <td align="right" style="white-space: nowrap"> <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline"> <input class="ep_tm_searchbarbox" size="20" type="text" name="q" /> <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" /> <input type="hidden" name="_order" value="bytitle" /> <input type="hidden" name="basic_srchtype" value="ALL" /> <input type="hidden" name="_satisfyall" value="ALL" /> </form> </td> </tr></table></td></tr> <tr> <td class="toplinks"><!-- InstanceBeginEditable name="content" --> <div align="center"> <table width="720" class="ep_tm_main"><tr><td align="left"> <h1 class="ep_tm_pagetitle">Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia</h1> <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Ulrich, T.</span> and <span class="person_name">Golding, S.D.</span> and <span class="person_name">Kamber, B.S.</span> and <span class="person_name">Zaw, K.</span> and <span class="person_name">Taube, A.</span> (2002) <xhtml:em>Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia.</xhtml:em> Ore Geology Reviews, 22 (1-2). pp. 61-90. ISSN 0169-1368</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2065/1/Ulrich.Golding.etal.OGR.2002.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2065/1/Ulrich.Golding.etal.OGR.2002.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />1134Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="2604" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/doi:10.1016/S0169-1368(02)00109-9">http://dx.doi.org/doi:10.1016/S0169-1368(02)00109-9</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan. The Mt Morgan Au–Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite–trondhjemite–dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au–Cu ore is associated with a later quartz–chalcopyrite–pyrite stockwork mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au–Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45–80% seawater salinity) and temperatures of 210 to 270 degrees C estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array of CO2-bearing fluids. Comparison with active submarine hydrothermal vents shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au–Cu mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu originated from the Mt Morgan intrusions and a particular volcanic strata that shows elevated Cu background.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">VHMS; Fluid inclusions; Tonalite; Laser ablation ICP-MS; Magmatic vapor</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences > 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2065</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">05 Oct 2007 15:54</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2065;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&eprintid=2065">item control page</a></p> </td></tr></table> </div> <!-- InstanceEndEditable --></td> </tr> <tr> <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" --> <table width="795" border="0" align="left" cellpadding="0" class="footer"> <tr valign="top"> <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td> </tr> <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr> <tr valign="top"> <td width="68%" class="footer">Authorised by the University Librarian<br /> © University of Tasmania ABN 30 764 374 782<br /> <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright & Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a> </td> <td width="32%"><div align="right"> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br /> </a></p> </div></td> </tr> <tr valign="top"> <td><p> </p></td> <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td> </tr> </table> <!-- #EndLibraryItem --> <div align="center"></div></td> </tr> </table> </body> </html>