Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 2065.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
  <head>
    <title>UTas ePrints - Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia</title>
    <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
    <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
    <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
    <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
    <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
    <link rel="Top" href="http://eprints.utas.edu.au/" />
    <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
    <meta content="Ulrich, T." name="eprints.creators_name" />
<meta content="Golding, S.D." name="eprints.creators_name" />
<meta content="Kamber, B.S." name="eprints.creators_name" />
<meta content="Zaw, K." name="eprints.creators_name" />
<meta content="Taube, A." name="eprints.creators_name" />
<meta content="thomas.ulrich@anu.edu.au" name="eprints.creators_id" />
<meta content="" name="eprints.creators_id" />
<meta content="" name="eprints.creators_id" />
<meta content="Khin.Zaw@utas.edu.au" name="eprints.creators_id" />
<meta content="" name="eprints.creators_id" />
<meta content="article" name="eprints.type" />
<meta content="2007-10-05 05:54:04" name="eprints.datestamp" />
<meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
<meta content="show" name="eprints.metadata_visibility" />
<meta content="Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan
Au–Cu deposit, Australia" name="eprints.title" />
<meta content="pub" name="eprints.ispublished" />
<meta content="260100" name="eprints.subjects" />
<meta content="restricted" name="eprints.full_text_status" />
<meta content="VHMS; Fluid inclusions; Tonalite; Laser ablation ICP-MS; Magmatic vapor" name="eprints.keywords" />
<meta content="Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan.
The Mt Morgan Au–Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of
the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite–trondhjemite–dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au–Cu ore is associated with a later quartz–chalcopyrite–pyrite stockwork mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au–Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization.
Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45–80% seawater salinity) and temperatures of 210 to 270 degrees C estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array of CO2-bearing fluids. Comparison with active submarine hydrothermal vents
shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization.
Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au–Cu mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu originated from the Mt Morgan intrusions and a
particular volcanic strata that shows elevated Cu background." name="eprints.abstract" />
<meta content="2002" name="eprints.date" />
<meta content="published" name="eprints.date_type" />
<meta content="Ore Geology Reviews" name="eprints.publication" />
<meta content="22" name="eprints.volume" />
<meta content="1-2" name="eprints.number" />
<meta content="61-90" name="eprints.pagerange" />
<meta content="doi:10.1016/S0169-1368(02)00109-9" name="eprints.id_number" />
<meta content="TRUE" name="eprints.refereed" />
<meta content="0169-1368" name="eprints.issn" />
<meta content="http://dx.doi.org/doi:10.1016/S0169-1368(02)00109-9" name="eprints.official_url" />
<meta content="Alt, J.C., 1994. A sulfur isotopic profile through the Troodos ophiolite,
Cyprus: primary composition and the effects of seawater
hydrothermal alteration. Geochimica et Cosmochimica Acta 58,
1825–1840.
Alt, J.C., Anderson, T.F., Bonnell, L., 1989. The geochemistry of
sulfur in a 1.3 km section of hydrothermally altered oceanic
crust, DSDP Hole 504B. Geochimica et Cosmochimica Acta
53 (5), 1011 – 1023.
Archibald, S.M., Migdisov, A.A., Williams-Jones, A.E., 2001. The
stability of Au-chloride complexes in water vapor at elevated
temperatures and pressures. Geochimica et Cosmochimica Acta
65, 4413– 4423.
Arnold, G.O., Sillitoe, R.H., 1989. Mount Morgan gold – copper
deposit, Queensland, Australia: evidence for an intrusion-related
replacement origin. Economic Geology 84, 1805– 1816.
Arribas Jr., A., 1995. Characteristics of high-sulfidation epithermal
deposits, and their relation to magmatic fluid. In: Thompson,
J.F.H. (Ed.), Magmas, Fluids and Ore Deposits. Mineralogical
Association of Canada, Victoria, British Columbia, pp. 419–
454. Short Course Series.
Ballantyne, J.M., Moore, J.N., 1988. Arsenic geochemistry in
geothermal systems. Geochimica et Cosmochimica Acta 52,
475– 483.
Barker, F., 1979. Trondhjemite; definition, environment and hypotheses
of origin. In: Barker, F. (Ed.), Trondhjemites, Dacites, and
Related Rocks. Elsevier, Amsterdam, Netherlands, pp. 1– 12.
Barker, F., Arth, J.G., 1976. Generation of trondhjemitic– tonalitic
liquids and Archean bimodal trondhjemite–basalt suites. Geology
4 (10), 596– 600.
Binns, R.A., Parr, J.M., Scott, S.D., Gemmell, J.B., Herzig, P.M.,
1995. PACMANUS; an active seafloor hydrothermal field on
siliceous volcanic rocks in the eastern Manus Basin, Papua New
Guinea. In: Mauk, L., George, J.D.S. (Eds.), Proceedings of the
1995 PACRIM Congress; Exploring the Rim. Australasian Institute
of Mining and Metallurgy, Parkville, Victoria, Australia,
pp. 49– 54.
Bischoff, J.L., Dickson, F.W., 1975. Seawater– basalt interaction at
200 jC and 500 bars; implications for origin of sea-floor heavymetal
deposits and regulation of seawater chemistry. Earth and
Planetary Science Letters 25 (3), 385– 397.
Bischoff, J.L., Pitzer, K.S., 1985. Phase-relations and adiabats in
boiling seafloor geothermal systems. Earth and Planetary Science
Letters 75 (4), 327– 338.
Blevin, P.L., Candela, P.A., Chappell, B.W., 1996. Magmatic controls
on ore metal ratios across the Cu–Mo (Au) ‘porphyyry’
spectrum. In: Kennard, J.M. (Ed.), Geoscience for the Community;
13th Australian Geological Convention. Geological Society
of Australia, Canberra, Australia, p. 41.
Bodnar, R.J., Vityk, M.O., 1994. Interpretation of microthermometric
data for H2O–NaCl fluid inclusions. In: DeVivo, B., Frezzotti,
M.L. (Eds.), Fluid Inclusions in Minerals, Virginia
Polytechnic Institute and State University press, Blacksburg,
VA, pp. 117–130.
Boulter, C.A., 1996. Extensional tectonics and magmatism as drivers
of convection leading to Iberian pyrite belt massive sulphide
deposits? Journal of the Geological Society of London 153
(Part 2), 181– 184.
Brown, D., McClay, K.R., 1998. Data report: sulfide textures in the
active TAG massive sulfide deposit, 26 N, Mid-Atlantic Ridge.
In: Herzig, P.M., Humphris, S.E., Miller, D.J., Zierenberg, R.A.
(Eds.), Proceedings of the Ocean Drilling Program, Scientific
Results, pp. 193– 200.
Cann, J.R., Strens, M.R., Rice, A., 1985. A simple magma-driven
thermal balance model for the formation of volcanogenic massive
sulphides. Earth and Planetary Science Letters 76 (1– 2),
123– 134.
Cathles, L.M., 1983. An analysis of the hydrothermal system responsible
for massive sulfide deposition in the Hokuroku basin
of Japan. Economic Geology Monograph 5, 439– 487.
Clift, P.D., 1995. Volcaniclastic sedimentation and volcanism during
the rifting of the Western Pacific island arcs. In: Taylor, B.,
Natland, J. (Eds.), Active Margins and Marginal Basins of the Western Pacific. Geophysical Monograph. American Geophysical
Union, pp. 67–96.
Cline, J.S., Bodnar, R.J., 1991. Can economic porphyry copper
mineralization be generated by a typical calc-alkaline melt?
Journal of Geophysical Research 96 (B5), 8113– 8126.
Collerson, K.D., Kamber, B.S., Schoenberg, R., 2002. Applications
of accurate, high-precision Pb isotope ratio measurement by
multi-collector ICP-MS. Chemical Geology 188, 65– 83.
Cooke, D.R., McPhail, D.C., 1996. Telluride mineralisation in low
sulfidation epithermal veins; contributions of magmatic volatiles.
In: Kennard John, M. (Ed.), Geoscience for the Community; 13th
Australian Geological Convention. Abstracts-Geological Society
of Australia. Geological Society of Australia, Sydney, NSW,
Australia, p. 96.
Cooke, D.R., Simmons, S.F., 2000. Characterisitcs and genesis of
epithermal gold deposits. Reviews in Economic Geology 13,
221– 244.
Cornelius, K.D., 1967. Breccia pipe associated with epigenetic mineralization,
Mount Morgan, Queensland. Economic Geology 62
(2), 282– 285.
Cornelius, K.D., 1968. The ore deposit and general geology of the
Mount Morgan area. PhD Thesis, University of Queensland,
Brisbane, 538 pp.
Delaney, J.R., Cosens, B.A., 1982. Boiling and metal deposition in
submarine hydrothermal systems. Marine Technology Society
Journal 16 (3, Special issue, Polymetallic sulfides), 62– 66.
Eadington, P.J., Smith, J.W., Wilkins, R.W.T., 1974. Fluid inclusion
and sulphur isotope research, Mount Morgan, Queensland. Australasian
Institute of Mining and Metallurgy, 441–444.
Ewart, A., 1979. A review of the mineralogy and chemistry of
Tertiary– Recent dacitic, latitic, rhyolitic, and related salic volcanic
rocks. In: Barker, F. (Ed.), Trondhjemites, Dacites and
Related Rocks. Elsevier, Amsterdam, pp. 13–122.
Ewart, A., Hawkesworth, C.J., 1987. The Pleistocene–Recent Tonga–
Kermadec Arc lavas; interpretation of new isotopic and rare
earth data in terms of a depleted mantle source model. Journal of
Petrology 28 (3), 495– 530.
Fiske, R.S., Naka, J., Iizasa, K., Yuasa, M., Klaus, A., 2001. Submarine
silicic caldera at the front of the Izu– Bonin arc, Japan:
voluminous seafloor eruptions of rhyolite pumice. Geological
Society of America Bulletin 113 (7), 813– 824.
Fouquet, Y., et al., 1993. Metallogenesis in back-arc environments;
the Lau Basin example. Economic Geology 88 (8), 2150– 2177.
Fouquet, Y., et al., 1996. Formation of large sulfide mineral deposits
along fast spreading ridges; example from off-axial deposits
at 12 degrees 43VN on the East Pacific Rise. Earth and Planetary
Science Letters 144 (1–2), 147– 162.
Frets, D.C., 1974. Rock Relationships and Mineralization at Mount
Morgan. Australasian Institute of Mining and Metallurgy, Parkville,
Vic., Australia, pp. 425– 440.
Frets, D.C., Balde, R., 1975. The Mount Morgan copper– gold ore
deposit. In: Knight, C.L. (Ed.), Economic Geology of Australia
and Papua New Guinea: I. Metals. Australasian Institute of
Mining and Metallurgy, Melbourne, pp. 779– 785.
Galley, A.G., 1999. The role of composite sub-seafloor intrusions in
developing volcanogenic massive sulfide hydrothermal systems.
In: Anonymous (Ed.), Abstracts with Programs-Geological Society
of America. Geological Society of America, 1999 Annual
Meeting. Geological Society of America (GSA), p. 405.
Galley, A., 2000. The role of synvolcanic composite intrusions in the
generation of VMS hydrothermal systems. In: Gemmell, J.B.,
Pongratz, J. (Eds.), Volcanic Environments and Massive Sulfide
Deposits, Program and Abstracts, Hobart, Australia, pp. 50– 51.
Galley, A., van, B.O., Franklin, J., 2000. The relationship between
intrusion-hosted Cu–Mo mineralization and VMS deposits of
the Archean Sturgeon Lake mining camp, northwestern Ontario.
Economic Geology 95 (7), 1543– 1550.
Gemmell, J.B., 1987. Geochemistry of metallic trace elements in
fumarolic condensates from Nicaraguan and Costa Rican volcanoes.
In: Williams, N., Carr, M. (Eds.), Richard E. Stoiber 75th
Birthday Volume. Journal of Volcanology and Geothermal Research,
vol. 33, Elsevier, Amsterdam, Netherlands, pp. 161– 181.
Gemmell, J.B., 1995. Comparison of volcanic-hosted massive sulphide
deposits in modern and ancient back-arc basins; examples
from the Southwest Pacific and Australia. In: Mauk, L., George,
J.D.S. (Eds.), Proceedings of the 1995 PACRIM Congress; Exploring
the Rim. Australasian Institute of Mining and Metallurgy,
Parkville, Victoria, Australia, pp. 227– 232.
Gemmell, J.B., Large, R.R., 1992. Stringer system and alteration
zones underlying the Hellyer volcanogenic massive sulfide deposit,
Tasmania, Australia. Economic Geology 87 (3), 620– 649.
Gemmell, J.B., Sharpe, R., Ocean Drilling Program, L., Shipboard
Scientific Party, College Station, TX, United States, 1998. Detailed
sulfur-isotope investigation of the TAG hydrothermal
mound and stockwork zone, 26 degrees N, Mid-Atlantic
Ridge. In: Herzig, P.M., et al. (Eds.), Proceedings of the Ocean
Drilling Program, Scientific Results. Proceedings of the Ocean
Drilling Program, Scientific Results, TAG, Drilling an Active
Hydrothermal System on a Sediment-Free Slow-Spreading
Ridge; Covering Leg 158 of the Cruises of the Drilling Vessel
JOIDES Resolution, Las Palmas, Gran Canaria, to Las Palmas,
Gran Canaria, Site 957, 23 September – 22 November 1994.
Texas A&amp;M University, Ocean Drilling Program, College Station,
TX, United States, pp. 71– 84.
Gibbson, G., 1974. Mineralogical Studies at Mount Morgan,
Queensland. Australasian Institute of Mining and Metallurgy,
pp. 445– 463.
Golding, S.D., et al., 1993. Mount Morgan Gold– Copper Deposit:
The 1992 Perspective. Australasian Institute of Mining and Metallurgy,
Adelaide, Parkville, Vic., Australia, pp. 95–111.
Golding, S.D., et al., 1994. Mount Morgan gold– copper deposit;
geochemical constraints on the sources of volatiles and lead and
the age of mineralisation. In: Henderson, R.A., Davis, B. (Eds.),
Contributions of the Economic Geology Research Unit. Extended
Conference Abstracts; New Developments in Geology
and Metallogeny; Northern Tasman Orogenic Zone. Geology
Department, James Cook University of North Queensland,
Townsville, Australia, pp. 89–95.
Gulson, B.L., Vaasjoki, M., 1987. Lead isotope data from the Thalanga,
Dry River and Mt. Chalmers base metal deposits and their
bearing on exploration and ore genesis in eastern Australia.
Australian Journal of Earth Sciences 34 (2), 159– 173.
Gu¨nther, D., Aude´tat, A., Frischknecht, R., Heinrich, C.A., 1998.
Quantitative analysis of major, minor and trace elements in fluid inclusions using Laser Ablation-Inductively Coupled Plasma-
Mass Spectrometry (LA-ICP-MS). Journal of Analytical Atomic
Spectroscopy 13 (4), 263– 270.
Heinrich, C.A., Ryan, C.G., Mernagh, T.P., Eadington, P.J., 1992.
Segregation of ore metals between magmatic brine and vapor: a
fluid inclusion study using PIXE microanalysis. Economic
Geology 87, 1566– 1583.
Heinrich, C.A., Gu¨nther, D., Aude´tat, A., Ulrich, T., Frischknecht,
R., 1999. Metal fractionation between magmatic brine and vapor,
determined by micro-analysis of fluid inclusions. Geology
27 (8), 755– 758.
Henley, R.W., Thornley, P., 1979. Some geothermal aspects of polymetallic
massive sulfide formation. Economic Geology 74,
1600–1612.
Huston, D.L., Sie, S.H., Suter, G.F., Cooke, D.R., Both, R.A., 1995.
Trace elements in sulfide minerals from eastern Australian volcanic-
hosted massive sulfide deposits; part I, proton microprobe
analyses of pyrite, chalcopyrite, and sphalerite, and part II, selenium
levels in pyrite; comparison with d34S values and implications
for the source of sulfur in volcanogenic hydrothermal
systems. Economic Geology 90 (5), 1167– 1196.
Iizasa, K., et al., 1999. A Kuroko-type polymetallic sulfide deposit
in a submarine silicic caldera. Science 283 (5404), 975– 977.
Kamber, B.S., Moorbath, S., 1998. Initial Pb of the Amıˆtsoq
gneiss revisited: implication for the timing of early Archaean
crustal evolution in West Greenland. Chemical Geology 150,
19–41.
Kawate, S., Arima, M., 1998. Petrogenesis of the Tanzawa plutonic
complex, central Japan: exposed felsic middle crust of the Izu–
Bonin– Mariana arc. Island Arc 7 (3), 342– 358.
Khin Zaw, Gemmell, J.B., Large, R.R., Mernagh, T.P., Ryan, C.G.,
1996. Evolution and source of ore fluids in the stringer system,
Hellyer VHMS deposit, Tasmania, Australia: evidence from
fluid inclusion microthermometry and geochemistry. Ore Geology
Reviews 10, 251–278.
Khin Zaw, Hunns, S.R., Large, R.R., Gemmell, B.J., Ryan, C.G.,
Mernagh, T.P., 2002. Microthermometry and chemical composition
of fluid inclusions from the Mt. Chalmers volcanic-hosted
massive sulphide deposits, central Queensland, Australia: implications
for ore genesis. Chemical Geology (in press).
Kojima, S., Sugaki, A., 1985. Phase-relations in the Cu–Fe –Zn–S
System between 500 jC and 300 jC under hydrothermal conditions.
Economic Geology 80 (1), 158– 171.
Kramers, J., Tolstikhin, I.N., 1993. Modelling of Earth’s accretion
using Pu– Xe, U–Pb and siderophile element systematics. In:
Anonymous (Ed.), AGU 1993 Fall Meeting. Eos, Transactions,
American Geophysical Union American Geophysical Union,
Washington, DC, United States, p. 655.
Kramers, J.D., Tolstikhin, I.N., 1997. Two terrestrial lead isotope
paradoxes, forward transport modelling, core formation and the
history of the continental crust. Chemical Geology 139, 75– 110.
Large, R.R., 1992. Australian volcanic-hosted massive sulfide deposits:
features, styles, and genetic models. Economic Geology
87, 471–510.
Lawrence, L.J., 1967. A mineragraphic study of Mount Morgan
copper–gold ore. Australasian Institute of Mining and Metallurgy
Proceedings 233, Parkville, Vic., Australia, pp. 29– 47.
Lawrence, L.J., 1972. The thermal metamorphism of a pyritic sulfide
ore. Economic Geology 67, 487– 496.
Lawrence, L.J., 1974. The Nature and Origin of the Ore Minerals of
Mount Morgan. Australasian Institute of Mining and Metallurgy,
pp. 417– 424.
Le´cuyer, C., et al., 1999. Phase separation and fluid mixing in
subseafloor back arc hydrothermal systems: a microthermometric
and oxygen isotope study of fluid inclusions in the baritesulfide
chimneys of the Lau basin. Journal of Geophysical Research
104 (B8), 17911– 17927.
Lentz, D.R., 1998. Petrogenetic evolution of felsic volcanic sequences
associated with Phanerozoic volcanic-hosted massive sulphide
systems; the role of extensional geodynamics. Ore Geology
Reviews 12 (5), 289–327.
Lesher, C.M., Goodwin, A.M., Campbell, I.H., Gorton, M.P., 1986.
Trace-element geochemistry of ore-associated and barren, felsic
metavolcanic rocks in the Superior Province, Canada. Canadian
Journal of Earth Sciences 23, 222– 237.
Lydon, J.W., 1988. Ore deposit models. Volcanogenic massive sulphide
deposits Part 2: genetic models. Geoscience Canada 15,
43– 65.
Marsaglia, K.M., 1995. Interarc and backarc basins. In: Busby, C.J.,
Ingersoll, R.V. (Eds.), Tectonics of Sedimentary Basins. Blackwell,
Cambridge, MA, pp. 299–329.
McDonough, W.F., Sun, S.S., 1995. Composition of the Earth.
Chemical Geology 120, 223– 253.
Messenger, P.R., 1996. Relationships between Devonian magmatism
and Au–Cu mineralisation at Mt. Morgan, Central Queensland.
PhD Thesis, University of Queensland, Brisbane, 353 pp.
Messenger, P.R., Golding, S.D., Taube, A., 1997. Volcanic setting
of the Mt. Morgan Au–Cu deposit, Central Queensland: implications
of ore genesis. In: Ashley, P.M., Flood, P.G. (Eds.),
Tectonics and Metallogenesis of the New England Orogen.
Geological Society of Australia, Special Publication, vol. 19,
pp. 109–127.
Messenger, P., Taube, A., Golding, S.D., Hartley, J.S., 1998. Mount
Morgan gold– copper deposit. In: Berkman, D.A., Mackenzie,
D.H. (Eds.), Geology of Australian and Papua New Guinean
Mineral Deposits. Australasian Institute of Mining and Metallurgy,
Melbourne, pp. 715–722.
Nakajima, K., Arima, M., 1998. Melting experiments on hydrous
low-K tholeiite: implications for the genesis of tonalitic crust in
the Izu– Bonin–Mariana arc. Island Arc 7 (3), 359–373.
Naney, M.T., 1983. Phase equilibria of rock-forming ferromagnesian
silicates in granitic systems. American Journal of Science
283, 993– 1033.
Ohmoto, H., Goldhaber, M.B., 1997. Sulfur and carbon isotopes.
In: Barnes, H.L. (Eds.), Geochemistry of Hydrothermal Ore
Deposits. Wiley, New York, pp. 517–612.
Ohmoto, H., Rye, R.O., 1979. Sulfur and carbon isotopes. In:
Barnes, H.L. (Eds.), Geochemistry of Hydrothermal Ore Deposits.
Wiley, New York, pp. 509– 567.
Paltridge, I.M., 1967. Breccia pipe mineralization at Mount Morgan—
a discussion. Economic Geology 62, 861–862.
Pichler, T., Giggenbach, W.F., McInnes, B.I.A., Buhl, D., Duck,
B., 1999. Fe sulfide formation due to seawater – gas – sediment
interaction in a shallow-water hydrothermal system at Lihir Island, Papua New Guinea. Economic Geology 94 (2),
281– 288.
Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of
amphibolite/eclogite and the origin of Archean trondhjemites
and tonalites. In: Haapala, I., Condie, K. (Eds.), Precambrian
Granitoids; Petrogenesis, Geochemistry and Metallogeny. Precambrian
Research, vol. 51, pp. 1 –25.
Robinson, B.W., Kusakabe, M., 1975. Quantitative preparation of
sulfur dioxide for 34S/32S analysis from sulfides by combustion
with cuprous oxide. Chemical Geology 47, 1179–1181.
Roedder, E. (Ed.), 1984. Fluid Inclusions. Reviews in Mineralogy,
vol. 12, Mineralogical Society of America, Virginia Polytechnic
Institute and State University press, Blacksburg, VA, 646 pp.
Sawkins, F.J., 1990. Integrated tectonic– genetic model for volcanic-
hosted massive sulfide deposits. Geology 18 (11),
1061–1064.
Schuetz, W., Ebneth, J., Meyer, K.D., 1987. Trondhjemites, tonalites
and diorites in the South Portuguese Zone and their relations
to the vulcanites and mineral deposits of the Iberian Pyrite
Belt. Geologische Rundschau 76 (1), 201– 212.
Seewald, J.S., Seyfried Jr., W.E., 1990. The effect of temperature on
metal mobility in subseafloor hydrothermal systems; constraints
from basalt alteration experiments. Earth and Planetary Science
Letters 101 (2– 4), 388– 403.
Seyfried Jr., W.E., Bischoff, J.L., 1979. Low temperature basalt
alteration by seawater; an experimental study at 70 jC and 150
jC. Geochimica et Cosmochimica Acta 43 (12), 1937– 1948.
Sherlock, R.L., Roth, T., Spooner, E.T.C., Bray, C.J., 1999. Origin
of the Eskay Creek precious metal-rich volcanogenic massive
sulfide-deposit. Fluid inclusion and stable isotope evidence.
Economic Geology 94, 803– 824.
Shinohara, H., 1994. Exsolution of immiscible vapor and liquid
phases from a crystallizing silicate melt: implications for chlorine
and metal transport. Geochimica et Cosmochimica Acta 58
(23), 5215– 5221.
Smith, R.N., Huston, D.L., 1992. Distribution and association of
selected trace elements at the Rosebery deposit, Tasmania. Economic
Geology 87, 706– 719.
Solomon, M., Eastoe, C.J., Walshe, J.L., Green, G.R., 1988. Mineral
deposits and sulfur isotope abundances in the Mount Read
Volcanics between Que River and Mount Darwin, Tasmania.
Economic Geology 83 (7), 1307– 1328.
Stanton, R.L., 1987. Magmatic evolution and exhalative ores; evidence
from the SW Pacific. In: Brennan, E. (Ed.), Pacific Rim
Congress 87; an International Congress on the Geology, Structure,
Mineralisation and Economics of the Pacific Rim. Australasian
Institute of Mining and Metallurgy, Parkville, Victoria,
Australia, pp. 591–595.
Symonds, R.B., Rose, W.I., Reed, M.H., Lichte, F.E., Finnegan,
D.L., 1987. Volatilization, transport and sublimation of metallic
and non-metallic elements in high temperature gases at Merapi
Volcano, Indonesia. Geochimica et Cosmochimica Acta 51,
2083– 2101.
Taube, A., 1986. The Mount Morgan gold– copper mine and environment,
Queensland: a volcanogenic massive sulphide deposit
associated with penecontemporaneous faulting. Economic Geology
81, 1322– 1340.
Taube, A., 1990. Mount Morgan gold– copper deposit. In: Huges,
F.E. (Ed.), Geology of the Mineral Deposits of Australia and
Papua New Guinea. Australasian Institute of Mining and Metallurgy,
Melbourne, pp. 1499–1504.
Taube, A., England, R., Messenger, P.R., 2000. Hurgledurgles as a
guide to ore at Mount Morgan, Queensland: retrogressed dalmatianite
and new volcanogenic mineralisation. In: Gemmell, J.B.,
Pongratz, J. (Eds.), Volcanic Environments and Massive Sulfide
Deposits, Program and Abstracts, Hobart, Australia, 200 pp.
Von Damm, K.L., 1990. Seafloor hydrothermal activity; black
smoker chemistry and chimneys. Annual Review of Earth and
Planetary Sciences 18, 173– 204.
Whitney, J.A., 1977. A synthetic model for vapor generation in
tonalite magmas and its economic ramifications. Economic
Geology 72, 686– 690.
Winther, K.T., 1996. An experimentally based model for the origin
of tonalitic and trondhjemitic melts. Chemical Geology 127
(1– 3), 43– 59.
Worthington, T.J., Gregory, M.R., Bondarenko, V., 1999. The Denham
Caldera on Raoul Volcano; dacitic volcanism in the Tonga
–Kermadec Arc. Journal of Volcanology and Geothermal
Research 90 (1– 2), 29–48.
Wright, I.C., Gamble, J.A., 1999. Southern Kermadec submarine
caldera arc volcanoes (SW Pacific); caldera formation by effusive
and pyroclastic eruption. Marine Geology 161 (2–4), 209– 229.
Wright, I.C., de Ronde, C.E.J., Faure, K., Gamble, J.A., 1998.
Discovery of hydrothermal sulfide mineralization from southern
Kermadec arc volcanoes (SW Pacific). Earth and Planetary Science
Letters 164 (1–2), 335– 343." name="eprints.referencetext" />
<meta content="Ulrich, T. and Golding, S.D. and Kamber, B.S. and Zaw, K. and Taube, A. (2002) Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia. Ore Geology Reviews, 22 (1-2). pp. 61-90. ISSN 0169-1368" name="eprints.citation" />
<meta content="http://eprints.utas.edu.au/2065/1/Ulrich.Golding.etal.OGR.2002.pdf" name="eprints.document_url" />
<link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
<meta content="Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan
Au–Cu deposit, Australia" name="DC.title" />
<meta content="Ulrich, T." name="DC.creator" />
<meta content="Golding, S.D." name="DC.creator" />
<meta content="Kamber, B.S." name="DC.creator" />
<meta content="Zaw, K." name="DC.creator" />
<meta content="Taube, A." name="DC.creator" />
<meta content="260100 Geology" name="DC.subject" />
<meta content="Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan.
The Mt Morgan Au–Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of
the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite–trondhjemite–dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au–Cu ore is associated with a later quartz–chalcopyrite–pyrite stockwork mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au–Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization.
Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45–80% seawater salinity) and temperatures of 210 to 270 degrees C estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array of CO2-bearing fluids. Comparison with active submarine hydrothermal vents
shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization.
Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au–Cu mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu originated from the Mt Morgan intrusions and a
particular volcanic strata that shows elevated Cu background." name="DC.description" />
<meta content="2002" name="DC.date" />
<meta content="Article" name="DC.type" />
<meta content="PeerReviewed" name="DC.type" />
<meta content="application/pdf" name="DC.format" />
<meta content="http://eprints.utas.edu.au/2065/1/Ulrich.Golding.etal.OGR.2002.pdf" name="DC.identifier" />
<meta content="http://dx.doi.org/doi:10.1016/S0169-1368(02)00109-9" name="DC.relation" />
<meta content="Ulrich, T. and Golding, S.D. and Kamber, B.S. and Zaw, K. and Taube, A. (2002) Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia. Ore Geology Reviews, 22 (1-2). pp. 61-90. ISSN 0169-1368" name="DC.identifier" />
<meta content="http://eprints.utas.edu.au/2065/" name="DC.relation" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/BibTeX/epprod-eprint-2065.bib" title="BibTeX" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/ContextObject/epprod-eprint-2065.xml" title="OpenURL ContextObject" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/ContextObject::Dissertation/epprod-eprint-2065.xml" title="OpenURL Dissertation" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/ContextObject::Journal/epprod-eprint-2065.xml" title="OpenURL Journal" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/DC/epprod-eprint-2065.txt" title="Dublin Core" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/DIDL/epprod-eprint-2065.xml" title="DIDL" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/EndNote/epprod-eprint-2065.enw" title="EndNote" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/HTML/epprod-eprint-2065.html" title="HTML Citation" type="text/html; charset=utf-8" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/METS/epprod-eprint-2065.xml" title="METS" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/MODS/epprod-eprint-2065.xml" title="MODS" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/RIS/epprod-eprint-2065.ris" title="Reference Manager" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/Refer/epprod-eprint-2065.refer" title="Refer" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/Simple/epprod-eprint-2065text" title="Simple Metadata" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/Text/epprod-eprint-2065.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/XML/epprod-eprint-2065.xml" title="EP3 XML" type="text/xml" />

  </head>
  <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
    
    <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>




<table width="795" border="0" cellspacing="0" cellpadding="0">
  <tr>
    <td><script language="JavaScript1.2">mmLoadMenus();</script>
      <table border="0" cellpadding="0" cellspacing="0" width="795">
        <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
        <tr>
          <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
        </tr>
        <tr>
          <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
          <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
          <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
          <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
          <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
          <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
          <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
          <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
          <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
          <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
          <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
        </tr>
        <tr>
          <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
          <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
        </tr>
        <tr>
          <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
          <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
        </tr>
      </table></td>
  </tr>
    <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
      <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
      <td align="right" style="white-space: nowrap">
        <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
          <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
          <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
          <input type="hidden" name="_order" value="bytitle" />
          <input type="hidden" name="basic_srchtype" value="ALL" />
          <input type="hidden" name="_satisfyall" value="ALL" />
        </form>
      </td>
    </tr></table></td></tr>
  <tr>
    <td class="toplinks"><!-- InstanceBeginEditable name="content" -->


<div align="center">
  
  <table width="720" class="ep_tm_main"><tr><td align="left">
    <h1 class="ep_tm_pagetitle">Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia</h1>
    <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Ulrich, T.</span> and <span class="person_name">Golding, S.D.</span> and <span class="person_name">Kamber, B.S.</span> and <span class="person_name">Zaw, K.</span> and <span class="person_name">Taube, A.</span> (2002) <xhtml:em>Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia.</xhtml:em> Ore Geology Reviews, 22 (1-2). pp. 61-90. ISSN 0169-1368</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2065/1/Ulrich.Golding.etal.OGR.2002.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2065/1/Ulrich.Golding.etal.OGR.2002.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />1134Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="2604" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/doi:10.1016/S0169-1368(02)00109-9">http://dx.doi.org/doi:10.1016/S0169-1368(02)00109-9</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan.&#13;
The Mt Morgan Au–Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of&#13;
the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite–trondhjemite–dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au–Cu ore is associated with a later quartz–chalcopyrite–pyrite stockwork mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au–Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization.&#13;
Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45–80% seawater salinity) and temperatures of 210 to 270 degrees C estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array of CO2-bearing fluids. Comparison with active submarine hydrothermal vents&#13;
shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization.&#13;
Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au–Cu mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu originated from the Mt Morgan intrusions and a&#13;
particular volcanic strata that shows elevated Cu background.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">VHMS; Fluid inclusions; Tonalite; Laser ablation ICP-MS; Magmatic vapor</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences &gt; 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2065</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">05 Oct 2007 15:54</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2065;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=2065">item control page</a></p>
  </td></tr></table>
</div>



    <!-- InstanceEndEditable --></td>
  </tr>
  <tr>
    <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
    <table width="795" border="0" align="left" cellpadding="0" class="footer">
  <tr valign="top">
<td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
</tr>
<tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
      <tr valign="top">
        <td width="68%" class="footer">Authorised by the University Librarian<br />
© University of Tasmania ABN 30 764 374 782<br />
      <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
        <td width="32%"><div align="right">
            <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
            <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
            </a></p>
        </div></td>
      </tr>
      <tr valign="top">
        <td><p>  </p></td>
        <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
      </tr>
    </table>
    <!-- #EndLibraryItem -->
    <div align="center"></div></td>
  </tr>
</table>

  </body>
</html>