Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 2065.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Ulrich, T." name="eprints.creators_name" />
  14. <meta content="Golding, S.D." name="eprints.creators_name" />
  15. <meta content="Kamber, B.S." name="eprints.creators_name" />
  16. <meta content="Zaw, K." name="eprints.creators_name" />
  17. <meta content="Taube, A." name="eprints.creators_name" />
  18. <meta content="thomas.ulrich@anu.edu.au" name="eprints.creators_id" />
  19. <meta content="" name="eprints.creators_id" />
  20. <meta content="" name="eprints.creators_id" />
  21. <meta content="Khin.Zaw@utas.edu.au" name="eprints.creators_id" />
  22. <meta content="" name="eprints.creators_id" />
  23. <meta content="article" name="eprints.type" />
  24. <meta content="2007-10-05 05:54:04" name="eprints.datestamp" />
  25. <meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
  26. <meta content="show" name="eprints.metadata_visibility" />
  27. <meta content="Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan
  28. Au–Cu deposit, Australia" name="eprints.title" />
  29. <meta content="pub" name="eprints.ispublished" />
  30. <meta content="260100" name="eprints.subjects" />
  31. <meta content="restricted" name="eprints.full_text_status" />
  32. <meta content="VHMS; Fluid inclusions; Tonalite; Laser ablation ICP-MS; Magmatic vapor" name="eprints.keywords" />
  33. <meta content="Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan.
  34. The Mt Morgan Au–Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of
  35. the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite–trondhjemite–dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au–Cu ore is associated with a later quartz–chalcopyrite–pyrite stockwork mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au–Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization.
  36. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45–80% seawater salinity) and temperatures of 210 to 270 degrees C estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array of CO2-bearing fluids. Comparison with active submarine hydrothermal vents
  37. shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization.
  38. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au–Cu mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu originated from the Mt Morgan intrusions and a
  39. particular volcanic strata that shows elevated Cu background." name="eprints.abstract" />
  40. <meta content="2002" name="eprints.date" />
  41. <meta content="published" name="eprints.date_type" />
  42. <meta content="Ore Geology Reviews" name="eprints.publication" />
  43. <meta content="22" name="eprints.volume" />
  44. <meta content="1-2" name="eprints.number" />
  45. <meta content="61-90" name="eprints.pagerange" />
  46. <meta content="doi:10.1016/S0169-1368(02)00109-9" name="eprints.id_number" />
  47. <meta content="TRUE" name="eprints.refereed" />
  48. <meta content="0169-1368" name="eprints.issn" />
  49. <meta content="http://dx.doi.org/doi:10.1016/S0169-1368(02)00109-9" name="eprints.official_url" />
  50. <meta content="Alt, J.C., 1994. A sulfur isotopic profile through the Troodos ophiolite,
  51. Cyprus: primary composition and the effects of seawater
  52. hydrothermal alteration. Geochimica et Cosmochimica Acta 58,
  53. 1825–1840.
  54. Alt, J.C., Anderson, T.F., Bonnell, L., 1989. The geochemistry of
  55. sulfur in a 1.3 km section of hydrothermally altered oceanic
  56. crust, DSDP Hole 504B. Geochimica et Cosmochimica Acta
  57. 53 (5), 1011 – 1023.
  58. Archibald, S.M., Migdisov, A.A., Williams-Jones, A.E., 2001. The
  59. stability of Au-chloride complexes in water vapor at elevated
  60. temperatures and pressures. Geochimica et Cosmochimica Acta
  61. 65, 4413– 4423.
  62. Arnold, G.O., Sillitoe, R.H., 1989. Mount Morgan gold – copper
  63. deposit, Queensland, Australia: evidence for an intrusion-related
  64. replacement origin. Economic Geology 84, 1805– 1816.
  65. Arribas Jr., A., 1995. Characteristics of high-sulfidation epithermal
  66. deposits, and their relation to magmatic fluid. In: Thompson,
  67. J.F.H. (Ed.), Magmas, Fluids and Ore Deposits. Mineralogical
  68. Association of Canada, Victoria, British Columbia, pp. 419–
  69. 454. Short Course Series.
  70. Ballantyne, J.M., Moore, J.N., 1988. Arsenic geochemistry in
  71. geothermal systems. Geochimica et Cosmochimica Acta 52,
  72. 475– 483.
  73. Barker, F., 1979. Trondhjemite; definition, environment and hypotheses
  74. of origin. In: Barker, F. (Ed.), Trondhjemites, Dacites, and
  75. Related Rocks. Elsevier, Amsterdam, Netherlands, pp. 1– 12.
  76. Barker, F., Arth, J.G., 1976. Generation of trondhjemitic– tonalitic
  77. liquids and Archean bimodal trondhjemite–basalt suites. Geology
  78. 4 (10), 596– 600.
  79. Binns, R.A., Parr, J.M., Scott, S.D., Gemmell, J.B., Herzig, P.M.,
  80. 1995. PACMANUS; an active seafloor hydrothermal field on
  81. siliceous volcanic rocks in the eastern Manus Basin, Papua New
  82. Guinea. In: Mauk, L., George, J.D.S. (Eds.), Proceedings of the
  83. 1995 PACRIM Congress; Exploring the Rim. Australasian Institute
  84. of Mining and Metallurgy, Parkville, Victoria, Australia,
  85. pp. 49– 54.
  86. Bischoff, J.L., Dickson, F.W., 1975. Seawater– basalt interaction at
  87. 200 jC and 500 bars; implications for origin of sea-floor heavymetal
  88. deposits and regulation of seawater chemistry. Earth and
  89. Planetary Science Letters 25 (3), 385– 397.
  90. Bischoff, J.L., Pitzer, K.S., 1985. Phase-relations and adiabats in
  91. boiling seafloor geothermal systems. Earth and Planetary Science
  92. Letters 75 (4), 327– 338.
  93. Blevin, P.L., Candela, P.A., Chappell, B.W., 1996. Magmatic controls
  94. on ore metal ratios across the Cu–Mo (Au) ‘porphyyry’
  95. spectrum. In: Kennard, J.M. (Ed.), Geoscience for the Community;
  96. 13th Australian Geological Convention. Geological Society
  97. of Australia, Canberra, Australia, p. 41.
  98. Bodnar, R.J., Vityk, M.O., 1994. Interpretation of microthermometric
  99. data for H2O–NaCl fluid inclusions. In: DeVivo, B., Frezzotti,
  100. M.L. (Eds.), Fluid Inclusions in Minerals, Virginia
  101. Polytechnic Institute and State University press, Blacksburg,
  102. VA, pp. 117–130.
  103. Boulter, C.A., 1996. Extensional tectonics and magmatism as drivers
  104. of convection leading to Iberian pyrite belt massive sulphide
  105. deposits? Journal of the Geological Society of London 153
  106. (Part 2), 181– 184.
  107. Brown, D., McClay, K.R., 1998. Data report: sulfide textures in the
  108. active TAG massive sulfide deposit, 26 N, Mid-Atlantic Ridge.
  109. In: Herzig, P.M., Humphris, S.E., Miller, D.J., Zierenberg, R.A.
  110. (Eds.), Proceedings of the Ocean Drilling Program, Scientific
  111. Results, pp. 193– 200.
  112. Cann, J.R., Strens, M.R., Rice, A., 1985. A simple magma-driven
  113. thermal balance model for the formation of volcanogenic massive
  114. sulphides. Earth and Planetary Science Letters 76 (1– 2),
  115. 123– 134.
  116. Cathles, L.M., 1983. An analysis of the hydrothermal system responsible
  117. for massive sulfide deposition in the Hokuroku basin
  118. of Japan. Economic Geology Monograph 5, 439– 487.
  119. Clift, P.D., 1995. Volcaniclastic sedimentation and volcanism during
  120. the rifting of the Western Pacific island arcs. In: Taylor, B.,
  121. Natland, J. (Eds.), Active Margins and Marginal Basins of the Western Pacific. Geophysical Monograph. American Geophysical
  122. Union, pp. 67–96.
  123. Cline, J.S., Bodnar, R.J., 1991. Can economic porphyry copper
  124. mineralization be generated by a typical calc-alkaline melt?
  125. Journal of Geophysical Research 96 (B5), 8113– 8126.
  126. Collerson, K.D., Kamber, B.S., Schoenberg, R., 2002. Applications
  127. of accurate, high-precision Pb isotope ratio measurement by
  128. multi-collector ICP-MS. Chemical Geology 188, 65– 83.
  129. Cooke, D.R., McPhail, D.C., 1996. Telluride mineralisation in low
  130. sulfidation epithermal veins; contributions of magmatic volatiles.
  131. In: Kennard John, M. (Ed.), Geoscience for the Community; 13th
  132. Australian Geological Convention. Abstracts-Geological Society
  133. of Australia. Geological Society of Australia, Sydney, NSW,
  134. Australia, p. 96.
  135. Cooke, D.R., Simmons, S.F., 2000. Characterisitcs and genesis of
  136. epithermal gold deposits. Reviews in Economic Geology 13,
  137. 221– 244.
  138. Cornelius, K.D., 1967. Breccia pipe associated with epigenetic mineralization,
  139. Mount Morgan, Queensland. Economic Geology 62
  140. (2), 282– 285.
  141. Cornelius, K.D., 1968. The ore deposit and general geology of the
  142. Mount Morgan area. PhD Thesis, University of Queensland,
  143. Brisbane, 538 pp.
  144. Delaney, J.R., Cosens, B.A., 1982. Boiling and metal deposition in
  145. submarine hydrothermal systems. Marine Technology Society
  146. Journal 16 (3, Special issue, Polymetallic sulfides), 62– 66.
  147. Eadington, P.J., Smith, J.W., Wilkins, R.W.T., 1974. Fluid inclusion
  148. and sulphur isotope research, Mount Morgan, Queensland. Australasian
  149. Institute of Mining and Metallurgy, 441–444.
  150. Ewart, A., 1979. A review of the mineralogy and chemistry of
  151. Tertiary– Recent dacitic, latitic, rhyolitic, and related salic volcanic
  152. rocks. In: Barker, F. (Ed.), Trondhjemites, Dacites and
  153. Related Rocks. Elsevier, Amsterdam, pp. 13–122.
  154. Ewart, A., Hawkesworth, C.J., 1987. The Pleistocene–Recent Tonga–
  155. Kermadec Arc lavas; interpretation of new isotopic and rare
  156. earth data in terms of a depleted mantle source model. Journal of
  157. Petrology 28 (3), 495– 530.
  158. Fiske, R.S., Naka, J., Iizasa, K., Yuasa, M., Klaus, A., 2001. Submarine
  159. silicic caldera at the front of the Izu– Bonin arc, Japan:
  160. voluminous seafloor eruptions of rhyolite pumice. Geological
  161. Society of America Bulletin 113 (7), 813– 824.
  162. Fouquet, Y., et al., 1993. Metallogenesis in back-arc environments;
  163. the Lau Basin example. Economic Geology 88 (8), 2150– 2177.
  164. Fouquet, Y., et al., 1996. Formation of large sulfide mineral deposits
  165. along fast spreading ridges; example from off-axial deposits
  166. at 12 degrees 43VN on the East Pacific Rise. Earth and Planetary
  167. Science Letters 144 (1–2), 147– 162.
  168. Frets, D.C., 1974. Rock Relationships and Mineralization at Mount
  169. Morgan. Australasian Institute of Mining and Metallurgy, Parkville,
  170. Vic., Australia, pp. 425– 440.
  171. Frets, D.C., Balde, R., 1975. The Mount Morgan copper– gold ore
  172. deposit. In: Knight, C.L. (Ed.), Economic Geology of Australia
  173. and Papua New Guinea: I. Metals. Australasian Institute of
  174. Mining and Metallurgy, Melbourne, pp. 779– 785.
  175. Galley, A.G., 1999. The role of composite sub-seafloor intrusions in
  176. developing volcanogenic massive sulfide hydrothermal systems.
  177. In: Anonymous (Ed.), Abstracts with Programs-Geological Society
  178. of America. Geological Society of America, 1999 Annual
  179. Meeting. Geological Society of America (GSA), p. 405.
  180. Galley, A., 2000. The role of synvolcanic composite intrusions in the
  181. generation of VMS hydrothermal systems. In: Gemmell, J.B.,
  182. Pongratz, J. (Eds.), Volcanic Environments and Massive Sulfide
  183. Deposits, Program and Abstracts, Hobart, Australia, pp. 50– 51.
  184. Galley, A., van, B.O., Franklin, J., 2000. The relationship between
  185. intrusion-hosted Cu–Mo mineralization and VMS deposits of
  186. the Archean Sturgeon Lake mining camp, northwestern Ontario.
  187. Economic Geology 95 (7), 1543– 1550.
  188. Gemmell, J.B., 1987. Geochemistry of metallic trace elements in
  189. fumarolic condensates from Nicaraguan and Costa Rican volcanoes.
  190. In: Williams, N., Carr, M. (Eds.), Richard E. Stoiber 75th
  191. Birthday Volume. Journal of Volcanology and Geothermal Research,
  192. vol. 33, Elsevier, Amsterdam, Netherlands, pp. 161– 181.
  193. Gemmell, J.B., 1995. Comparison of volcanic-hosted massive sulphide
  194. deposits in modern and ancient back-arc basins; examples
  195. from the Southwest Pacific and Australia. In: Mauk, L., George,
  196. J.D.S. (Eds.), Proceedings of the 1995 PACRIM Congress; Exploring
  197. the Rim. Australasian Institute of Mining and Metallurgy,
  198. Parkville, Victoria, Australia, pp. 227– 232.
  199. Gemmell, J.B., Large, R.R., 1992. Stringer system and alteration
  200. zones underlying the Hellyer volcanogenic massive sulfide deposit,
  201. Tasmania, Australia. Economic Geology 87 (3), 620– 649.
  202. Gemmell, J.B., Sharpe, R., Ocean Drilling Program, L., Shipboard
  203. Scientific Party, College Station, TX, United States, 1998. Detailed
  204. sulfur-isotope investigation of the TAG hydrothermal
  205. mound and stockwork zone, 26 degrees N, Mid-Atlantic
  206. Ridge. In: Herzig, P.M., et al. (Eds.), Proceedings of the Ocean
  207. Drilling Program, Scientific Results. Proceedings of the Ocean
  208. Drilling Program, Scientific Results, TAG, Drilling an Active
  209. Hydrothermal System on a Sediment-Free Slow-Spreading
  210. Ridge; Covering Leg 158 of the Cruises of the Drilling Vessel
  211. JOIDES Resolution, Las Palmas, Gran Canaria, to Las Palmas,
  212. Gran Canaria, Site 957, 23 September – 22 November 1994.
  213. Texas A&amp;M University, Ocean Drilling Program, College Station,
  214. TX, United States, pp. 71– 84.
  215. Gibbson, G., 1974. Mineralogical Studies at Mount Morgan,
  216. Queensland. Australasian Institute of Mining and Metallurgy,
  217. pp. 445– 463.
  218. Golding, S.D., et al., 1993. Mount Morgan Gold– Copper Deposit:
  219. The 1992 Perspective. Australasian Institute of Mining and Metallurgy,
  220. Adelaide, Parkville, Vic., Australia, pp. 95–111.
  221. Golding, S.D., et al., 1994. Mount Morgan gold– copper deposit;
  222. geochemical constraints on the sources of volatiles and lead and
  223. the age of mineralisation. In: Henderson, R.A., Davis, B. (Eds.),
  224. Contributions of the Economic Geology Research Unit. Extended
  225. Conference Abstracts; New Developments in Geology
  226. and Metallogeny; Northern Tasman Orogenic Zone. Geology
  227. Department, James Cook University of North Queensland,
  228. Townsville, Australia, pp. 89–95.
  229. Gulson, B.L., Vaasjoki, M., 1987. Lead isotope data from the Thalanga,
  230. Dry River and Mt. Chalmers base metal deposits and their
  231. bearing on exploration and ore genesis in eastern Australia.
  232. Australian Journal of Earth Sciences 34 (2), 159– 173.
  233. Gu¨nther, D., Aude´tat, A., Frischknecht, R., Heinrich, C.A., 1998.
  234. Quantitative analysis of major, minor and trace elements in fluid inclusions using Laser Ablation-Inductively Coupled Plasma-
  235. Mass Spectrometry (LA-ICP-MS). Journal of Analytical Atomic
  236. Spectroscopy 13 (4), 263– 270.
  237. Heinrich, C.A., Ryan, C.G., Mernagh, T.P., Eadington, P.J., 1992.
  238. Segregation of ore metals between magmatic brine and vapor: a
  239. fluid inclusion study using PIXE microanalysis. Economic
  240. Geology 87, 1566– 1583.
  241. Heinrich, C.A., Gu¨nther, D., Aude´tat, A., Ulrich, T., Frischknecht,
  242. R., 1999. Metal fractionation between magmatic brine and vapor,
  243. determined by micro-analysis of fluid inclusions. Geology
  244. 27 (8), 755– 758.
  245. Henley, R.W., Thornley, P., 1979. Some geothermal aspects of polymetallic
  246. massive sulfide formation. Economic Geology 74,
  247. 1600–1612.
  248. Huston, D.L., Sie, S.H., Suter, G.F., Cooke, D.R., Both, R.A., 1995.
  249. Trace elements in sulfide minerals from eastern Australian volcanic-
  250. hosted massive sulfide deposits; part I, proton microprobe
  251. analyses of pyrite, chalcopyrite, and sphalerite, and part II, selenium
  252. levels in pyrite; comparison with d34S values and implications
  253. for the source of sulfur in volcanogenic hydrothermal
  254. systems. Economic Geology 90 (5), 1167– 1196.
  255. Iizasa, K., et al., 1999. A Kuroko-type polymetallic sulfide deposit
  256. in a submarine silicic caldera. Science 283 (5404), 975– 977.
  257. Kamber, B.S., Moorbath, S., 1998. Initial Pb of the Amıˆtsoq
  258. gneiss revisited: implication for the timing of early Archaean
  259. crustal evolution in West Greenland. Chemical Geology 150,
  260. 19–41.
  261. Kawate, S., Arima, M., 1998. Petrogenesis of the Tanzawa plutonic
  262. complex, central Japan: exposed felsic middle crust of the Izu–
  263. Bonin– Mariana arc. Island Arc 7 (3), 342– 358.
  264. Khin Zaw, Gemmell, J.B., Large, R.R., Mernagh, T.P., Ryan, C.G.,
  265. 1996. Evolution and source of ore fluids in the stringer system,
  266. Hellyer VHMS deposit, Tasmania, Australia: evidence from
  267. fluid inclusion microthermometry and geochemistry. Ore Geology
  268. Reviews 10, 251–278.
  269. Khin Zaw, Hunns, S.R., Large, R.R., Gemmell, B.J., Ryan, C.G.,
  270. Mernagh, T.P., 2002. Microthermometry and chemical composition
  271. of fluid inclusions from the Mt. Chalmers volcanic-hosted
  272. massive sulphide deposits, central Queensland, Australia: implications
  273. for ore genesis. Chemical Geology (in press).
  274. Kojima, S., Sugaki, A., 1985. Phase-relations in the Cu–Fe –Zn–S
  275. System between 500 jC and 300 jC under hydrothermal conditions.
  276. Economic Geology 80 (1), 158– 171.
  277. Kramers, J., Tolstikhin, I.N., 1993. Modelling of Earth’s accretion
  278. using Pu– Xe, U–Pb and siderophile element systematics. In:
  279. Anonymous (Ed.), AGU 1993 Fall Meeting. Eos, Transactions,
  280. American Geophysical Union American Geophysical Union,
  281. Washington, DC, United States, p. 655.
  282. Kramers, J.D., Tolstikhin, I.N., 1997. Two terrestrial lead isotope
  283. paradoxes, forward transport modelling, core formation and the
  284. history of the continental crust. Chemical Geology 139, 75– 110.
  285. Large, R.R., 1992. Australian volcanic-hosted massive sulfide deposits:
  286. features, styles, and genetic models. Economic Geology
  287. 87, 471–510.
  288. Lawrence, L.J., 1967. A mineragraphic study of Mount Morgan
  289. copper–gold ore. Australasian Institute of Mining and Metallurgy
  290. Proceedings 233, Parkville, Vic., Australia, pp. 29– 47.
  291. Lawrence, L.J., 1972. The thermal metamorphism of a pyritic sulfide
  292. ore. Economic Geology 67, 487– 496.
  293. Lawrence, L.J., 1974. The Nature and Origin of the Ore Minerals of
  294. Mount Morgan. Australasian Institute of Mining and Metallurgy,
  295. pp. 417– 424.
  296. Le´cuyer, C., et al., 1999. Phase separation and fluid mixing in
  297. subseafloor back arc hydrothermal systems: a microthermometric
  298. and oxygen isotope study of fluid inclusions in the baritesulfide
  299. chimneys of the Lau basin. Journal of Geophysical Research
  300. 104 (B8), 17911– 17927.
  301. Lentz, D.R., 1998. Petrogenetic evolution of felsic volcanic sequences
  302. associated with Phanerozoic volcanic-hosted massive sulphide
  303. systems; the role of extensional geodynamics. Ore Geology
  304. Reviews 12 (5), 289–327.
  305. Lesher, C.M., Goodwin, A.M., Campbell, I.H., Gorton, M.P., 1986.
  306. Trace-element geochemistry of ore-associated and barren, felsic
  307. metavolcanic rocks in the Superior Province, Canada. Canadian
  308. Journal of Earth Sciences 23, 222– 237.
  309. Lydon, J.W., 1988. Ore deposit models. Volcanogenic massive sulphide
  310. deposits Part 2: genetic models. Geoscience Canada 15,
  311. 43– 65.
  312. Marsaglia, K.M., 1995. Interarc and backarc basins. In: Busby, C.J.,
  313. Ingersoll, R.V. (Eds.), Tectonics of Sedimentary Basins. Blackwell,
  314. Cambridge, MA, pp. 299–329.
  315. McDonough, W.F., Sun, S.S., 1995. Composition of the Earth.
  316. Chemical Geology 120, 223– 253.
  317. Messenger, P.R., 1996. Relationships between Devonian magmatism
  318. and Au–Cu mineralisation at Mt. Morgan, Central Queensland.
  319. PhD Thesis, University of Queensland, Brisbane, 353 pp.
  320. Messenger, P.R., Golding, S.D., Taube, A., 1997. Volcanic setting
  321. of the Mt. Morgan Au–Cu deposit, Central Queensland: implications
  322. of ore genesis. In: Ashley, P.M., Flood, P.G. (Eds.),
  323. Tectonics and Metallogenesis of the New England Orogen.
  324. Geological Society of Australia, Special Publication, vol. 19,
  325. pp. 109–127.
  326. Messenger, P., Taube, A., Golding, S.D., Hartley, J.S., 1998. Mount
  327. Morgan gold– copper deposit. In: Berkman, D.A., Mackenzie,
  328. D.H. (Eds.), Geology of Australian and Papua New Guinean
  329. Mineral Deposits. Australasian Institute of Mining and Metallurgy,
  330. Melbourne, pp. 715–722.
  331. Nakajima, K., Arima, M., 1998. Melting experiments on hydrous
  332. low-K tholeiite: implications for the genesis of tonalitic crust in
  333. the Izu– Bonin–Mariana arc. Island Arc 7 (3), 359–373.
  334. Naney, M.T., 1983. Phase equilibria of rock-forming ferromagnesian
  335. silicates in granitic systems. American Journal of Science
  336. 283, 993– 1033.
  337. Ohmoto, H., Goldhaber, M.B., 1997. Sulfur and carbon isotopes.
  338. In: Barnes, H.L. (Eds.), Geochemistry of Hydrothermal Ore
  339. Deposits. Wiley, New York, pp. 517–612.
  340. Ohmoto, H., Rye, R.O., 1979. Sulfur and carbon isotopes. In:
  341. Barnes, H.L. (Eds.), Geochemistry of Hydrothermal Ore Deposits.
  342. Wiley, New York, pp. 509– 567.
  343. Paltridge, I.M., 1967. Breccia pipe mineralization at Mount Morgan—
  344. a discussion. Economic Geology 62, 861–862.
  345. Pichler, T., Giggenbach, W.F., McInnes, B.I.A., Buhl, D., Duck,
  346. B., 1999. Fe sulfide formation due to seawater – gas – sediment
  347. interaction in a shallow-water hydrothermal system at Lihir Island, Papua New Guinea. Economic Geology 94 (2),
  348. 281– 288.
  349. Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of
  350. amphibolite/eclogite and the origin of Archean trondhjemites
  351. and tonalites. In: Haapala, I., Condie, K. (Eds.), Precambrian
  352. Granitoids; Petrogenesis, Geochemistry and Metallogeny. Precambrian
  353. Research, vol. 51, pp. 1 –25.
  354. Robinson, B.W., Kusakabe, M., 1975. Quantitative preparation of
  355. sulfur dioxide for 34S/32S analysis from sulfides by combustion
  356. with cuprous oxide. Chemical Geology 47, 1179–1181.
  357. Roedder, E. (Ed.), 1984. Fluid Inclusions. Reviews in Mineralogy,
  358. vol. 12, Mineralogical Society of America, Virginia Polytechnic
  359. Institute and State University press, Blacksburg, VA, 646 pp.
  360. Sawkins, F.J., 1990. Integrated tectonic– genetic model for volcanic-
  361. hosted massive sulfide deposits. Geology 18 (11),
  362. 1061–1064.
  363. Schuetz, W., Ebneth, J., Meyer, K.D., 1987. Trondhjemites, tonalites
  364. and diorites in the South Portuguese Zone and their relations
  365. to the vulcanites and mineral deposits of the Iberian Pyrite
  366. Belt. Geologische Rundschau 76 (1), 201– 212.
  367. Seewald, J.S., Seyfried Jr., W.E., 1990. The effect of temperature on
  368. metal mobility in subseafloor hydrothermal systems; constraints
  369. from basalt alteration experiments. Earth and Planetary Science
  370. Letters 101 (2– 4), 388– 403.
  371. Seyfried Jr., W.E., Bischoff, J.L., 1979. Low temperature basalt
  372. alteration by seawater; an experimental study at 70 jC and 150
  373. jC. Geochimica et Cosmochimica Acta 43 (12), 1937– 1948.
  374. Sherlock, R.L., Roth, T., Spooner, E.T.C., Bray, C.J., 1999. Origin
  375. of the Eskay Creek precious metal-rich volcanogenic massive
  376. sulfide-deposit. Fluid inclusion and stable isotope evidence.
  377. Economic Geology 94, 803– 824.
  378. Shinohara, H., 1994. Exsolution of immiscible vapor and liquid
  379. phases from a crystallizing silicate melt: implications for chlorine
  380. and metal transport. Geochimica et Cosmochimica Acta 58
  381. (23), 5215– 5221.
  382. Smith, R.N., Huston, D.L., 1992. Distribution and association of
  383. selected trace elements at the Rosebery deposit, Tasmania. Economic
  384. Geology 87, 706– 719.
  385. Solomon, M., Eastoe, C.J., Walshe, J.L., Green, G.R., 1988. Mineral
  386. deposits and sulfur isotope abundances in the Mount Read
  387. Volcanics between Que River and Mount Darwin, Tasmania.
  388. Economic Geology 83 (7), 1307– 1328.
  389. Stanton, R.L., 1987. Magmatic evolution and exhalative ores; evidence
  390. from the SW Pacific. In: Brennan, E. (Ed.), Pacific Rim
  391. Congress 87; an International Congress on the Geology, Structure,
  392. Mineralisation and Economics of the Pacific Rim. Australasian
  393. Institute of Mining and Metallurgy, Parkville, Victoria,
  394. Australia, pp. 591–595.
  395. Symonds, R.B., Rose, W.I., Reed, M.H., Lichte, F.E., Finnegan,
  396. D.L., 1987. Volatilization, transport and sublimation of metallic
  397. and non-metallic elements in high temperature gases at Merapi
  398. Volcano, Indonesia. Geochimica et Cosmochimica Acta 51,
  399. 2083– 2101.
  400. Taube, A., 1986. The Mount Morgan gold– copper mine and environment,
  401. Queensland: a volcanogenic massive sulphide deposit
  402. associated with penecontemporaneous faulting. Economic Geology
  403. 81, 1322– 1340.
  404. Taube, A., 1990. Mount Morgan gold– copper deposit. In: Huges,
  405. F.E. (Ed.), Geology of the Mineral Deposits of Australia and
  406. Papua New Guinea. Australasian Institute of Mining and Metallurgy,
  407. Melbourne, pp. 1499–1504.
  408. Taube, A., England, R., Messenger, P.R., 2000. Hurgledurgles as a
  409. guide to ore at Mount Morgan, Queensland: retrogressed dalmatianite
  410. and new volcanogenic mineralisation. In: Gemmell, J.B.,
  411. Pongratz, J. (Eds.), Volcanic Environments and Massive Sulfide
  412. Deposits, Program and Abstracts, Hobart, Australia, 200 pp.
  413. Von Damm, K.L., 1990. Seafloor hydrothermal activity; black
  414. smoker chemistry and chimneys. Annual Review of Earth and
  415. Planetary Sciences 18, 173– 204.
  416. Whitney, J.A., 1977. A synthetic model for vapor generation in
  417. tonalite magmas and its economic ramifications. Economic
  418. Geology 72, 686– 690.
  419. Winther, K.T., 1996. An experimentally based model for the origin
  420. of tonalitic and trondhjemitic melts. Chemical Geology 127
  421. (1– 3), 43– 59.
  422. Worthington, T.J., Gregory, M.R., Bondarenko, V., 1999. The Denham
  423. Caldera on Raoul Volcano; dacitic volcanism in the Tonga
  424. –Kermadec Arc. Journal of Volcanology and Geothermal
  425. Research 90 (1– 2), 29–48.
  426. Wright, I.C., Gamble, J.A., 1999. Southern Kermadec submarine
  427. caldera arc volcanoes (SW Pacific); caldera formation by effusive
  428. and pyroclastic eruption. Marine Geology 161 (2–4), 209– 229.
  429. Wright, I.C., de Ronde, C.E.J., Faure, K., Gamble, J.A., 1998.
  430. Discovery of hydrothermal sulfide mineralization from southern
  431. Kermadec arc volcanoes (SW Pacific). Earth and Planetary Science
  432. Letters 164 (1–2), 335– 343." name="eprints.referencetext" />
  433. <meta content="Ulrich, T. and Golding, S.D. and Kamber, B.S. and Zaw, K. and Taube, A. (2002) Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia. Ore Geology Reviews, 22 (1-2). pp. 61-90. ISSN 0169-1368" name="eprints.citation" />
  434. <meta content="http://eprints.utas.edu.au/2065/1/Ulrich.Golding.etal.OGR.2002.pdf" name="eprints.document_url" />
  435. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  436. <meta content="Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan
  437. Au–Cu deposit, Australia" name="DC.title" />
  438. <meta content="Ulrich, T." name="DC.creator" />
  439. <meta content="Golding, S.D." name="DC.creator" />
  440. <meta content="Kamber, B.S." name="DC.creator" />
  441. <meta content="Zaw, K." name="DC.creator" />
  442. <meta content="Taube, A." name="DC.creator" />
  443. <meta content="260100 Geology" name="DC.subject" />
  444. <meta content="Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan.
  445. The Mt Morgan Au–Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of
  446. the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite–trondhjemite–dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au–Cu ore is associated with a later quartz–chalcopyrite–pyrite stockwork mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au–Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization.
  447. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45–80% seawater salinity) and temperatures of 210 to 270 degrees C estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array of CO2-bearing fluids. Comparison with active submarine hydrothermal vents
  448. shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization.
  449. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au–Cu mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu originated from the Mt Morgan intrusions and a
  450. particular volcanic strata that shows elevated Cu background." name="DC.description" />
  451. <meta content="2002" name="DC.date" />
  452. <meta content="Article" name="DC.type" />
  453. <meta content="PeerReviewed" name="DC.type" />
  454. <meta content="application/pdf" name="DC.format" />
  455. <meta content="http://eprints.utas.edu.au/2065/1/Ulrich.Golding.etal.OGR.2002.pdf" name="DC.identifier" />
  456. <meta content="http://dx.doi.org/doi:10.1016/S0169-1368(02)00109-9" name="DC.relation" />
  457. <meta content="Ulrich, T. and Golding, S.D. and Kamber, B.S. and Zaw, K. and Taube, A. (2002) Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia. Ore Geology Reviews, 22 (1-2). pp. 61-90. ISSN 0169-1368" name="DC.identifier" />
  458. <meta content="http://eprints.utas.edu.au/2065/" name="DC.relation" />
  459. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/BibTeX/epprod-eprint-2065.bib" title="BibTeX" type="text/plain" />
  460. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/ContextObject/epprod-eprint-2065.xml" title="OpenURL ContextObject" type="text/xml" />
  461. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/ContextObject::Dissertation/epprod-eprint-2065.xml" title="OpenURL Dissertation" type="text/xml" />
  462. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/ContextObject::Journal/epprod-eprint-2065.xml" title="OpenURL Journal" type="text/xml" />
  463. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/DC/epprod-eprint-2065.txt" title="Dublin Core" type="text/plain" />
  464. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/DIDL/epprod-eprint-2065.xml" title="DIDL" type="text/xml" />
  465. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/EndNote/epprod-eprint-2065.enw" title="EndNote" type="text/plain" />
  466. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/HTML/epprod-eprint-2065.html" title="HTML Citation" type="text/html; charset=utf-8" />
  467. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/METS/epprod-eprint-2065.xml" title="METS" type="text/xml" />
  468. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/MODS/epprod-eprint-2065.xml" title="MODS" type="text/xml" />
  469. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/RIS/epprod-eprint-2065.ris" title="Reference Manager" type="text/plain" />
  470. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/Refer/epprod-eprint-2065.refer" title="Refer" type="text/plain" />
  471. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/Simple/epprod-eprint-2065text" title="Simple Metadata" type="text/plain" />
  472. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/Text/epprod-eprint-2065.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  473. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2065/XML/epprod-eprint-2065.xml" title="EP3 XML" type="text/xml" />
  474.  
  475. </head>
  476. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  477. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  478.  
  479.  
  480.  
  481.  
  482. <table width="795" border="0" cellspacing="0" cellpadding="0">
  483. <tr>
  484. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  485. <table border="0" cellpadding="0" cellspacing="0" width="795">
  486. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  487. <tr>
  488. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  489. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  490. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  491. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  492. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  493. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  494. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  495. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  496. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  497. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  498. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  499. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  500. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  501. </tr>
  502. <tr>
  503. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  504. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  505. </tr>
  506. <tr>
  507. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  508. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  509. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  510. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  511. </tr>
  512. <tr>
  513. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  514. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  515. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  516. </tr>
  517. <tr>
  518. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  519. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  520. </tr>
  521. <tr>
  522. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  523. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  524. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  525. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  526. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  527. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  528. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  529. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  530. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  531. </tr>
  532. <tr>
  533. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  534. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  535. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  536. </tr>
  537. <tr>
  538. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  539. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  540. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  541. </tr>
  542. </table></td>
  543. </tr>
  544. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  545. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  546. <td align="right" style="white-space: nowrap">
  547. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  548. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  549. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  550. <input type="hidden" name="_order" value="bytitle" />
  551. <input type="hidden" name="basic_srchtype" value="ALL" />
  552. <input type="hidden" name="_satisfyall" value="ALL" />
  553. </form>
  554. </td>
  555. </tr></table></td></tr>
  556. <tr>
  557. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  558.  
  559.  
  560. <div align="center">
  561. <table width="720" class="ep_tm_main"><tr><td align="left">
  562. <h1 class="ep_tm_pagetitle">Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia</h1>
  563. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Ulrich, T.</span> and <span class="person_name">Golding, S.D.</span> and <span class="person_name">Kamber, B.S.</span> and <span class="person_name">Zaw, K.</span> and <span class="person_name">Taube, A.</span> (2002) <xhtml:em>Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia.</xhtml:em> Ore Geology Reviews, 22 (1-2). pp. 61-90. ISSN 0169-1368</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2065/1/Ulrich.Golding.etal.OGR.2002.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2065/1/Ulrich.Golding.etal.OGR.2002.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />1134Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="2604" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/doi:10.1016/S0169-1368(02)00109-9">http://dx.doi.org/doi:10.1016/S0169-1368(02)00109-9</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan.&#13;
  564. The Mt Morgan Au–Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of&#13;
  565. the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite–trondhjemite–dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au–Cu ore is associated with a later quartz–chalcopyrite–pyrite stockwork mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au–Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization.&#13;
  566. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45–80% seawater salinity) and temperatures of 210 to 270 degrees C estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array of CO2-bearing fluids. Comparison with active submarine hydrothermal vents&#13;
  567. shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization.&#13;
  568. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au–Cu mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu originated from the Mt Morgan intrusions and a&#13;
  569. particular volcanic strata that shows elevated Cu background.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">VHMS; Fluid inclusions; Tonalite; Laser ablation ICP-MS; Magmatic vapor</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences &gt; 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2065</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">05 Oct 2007 15:54</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2065;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=2065">item control page</a></p>
  570. </td></tr></table>
  571. </div>
  572.  
  573.  
  574.  
  575. <!-- InstanceEndEditable --></td>
  576. </tr>
  577. <tr>
  578. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  579. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  580. <tr valign="top">
  581. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  582. </tr>
  583. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  584. <tr valign="top">
  585. <td width="68%" class="footer">Authorised by the University Librarian<br />
  586. © University of Tasmania ABN 30 764 374 782<br />
  587. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  588. <td width="32%"><div align="right">
  589. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  590. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  591. </a></p>
  592. </div></td>
  593. </tr>
  594. <tr valign="top">
  595. <td><p>  </p></td>
  596. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  597. </tr>
  598. </table>
  599. <!-- #EndLibraryItem -->
  600. <div align="center"></div></td>
  601. </tr>
  602. </table>
  603.  
  604. </body>
  605. </html>